BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 35472511)

  • 1. Optimization of large-scale manufacturing of biopolymeric and lipid nanoparticles using microfluidic swirl mixers.
    Tomeh MA; Mansor MH; Hadianamrei R; Sun W; Zhao X
    Int J Pharm; 2022 May; 620():121762. PubMed ID: 35472511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process Robustness in Lipid Nanoparticle Production: A Comparison of Microfluidic and Turbulent Jet Mixing.
    O'Brien Laramy MN; Costa AP; Cebrero YM; Joseph J; Sarode A; Zang N; Kim LJ; Hofmann K; Wang S; Goyon A; Koenig SG; Hammel M; Hura GL
    Mol Pharm; 2023 Aug; 20(8):4285-4296. PubMed ID: 37462906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manual Versus Microfluidic-Assisted Nanoparticle Manufacture: Impact of Silk Fibroin Stock on Nanoparticle Characteristics.
    Solomun JI; Totten JD; Wongpinyochit T; Florence AJ; Seib FP
    ACS Biomater Sci Eng; 2020 May; 6(5):2796-2804. PubMed ID: 32582839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High throughput microfluidics-based synthesis of PEGylated liposomes for precise size control and efficient drug encapsulation.
    Akar S; Fardindoost S; Hoorfar M
    Colloids Surf B Biointerfaces; 2024 Jun; 238():113926. PubMed ID: 38677154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: recent advances and opportunities.
    Mehraji S; DeVoe DL
    Lab Chip; 2024 Feb; 24(5):1154-1174. PubMed ID: 38165786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the Manufacturing Process of Lipid Nanoparticles for mRNA Delivery Using Machine Learning.
    Sato S; Sano S; Muto H; Kubara K; Kondo K; Miyazaki T; Suzuki Y; Uemoto Y; Ukai K
    Chem Pharm Bull (Tokyo); 2024; 72(6):529-539. PubMed ID: 38839372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network modelling hydrodenticity for optimal design by microfluidics of polymer nanoparticles to apply in magnetic resonance imaging.
    Smeraldo A; Ponsiglione AM; Netti PA; Torino E
    Acta Biomater; 2023 Nov; 171():440-450. PubMed ID: 37775077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic methods for production of liposomes.
    Yu B; Lee RJ; Lee LJ
    Methods Enzymol; 2009; 465():129-41. PubMed ID: 19913165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic manufacturing of tioconazole loaded keratin nanocarriers: Development and optimization by design of experiments.
    Khorshid S; Goffi R; Maurizii G; Benedetti S; Sotgiu G; Zamboni R; Buoso S; Galuppi R; Bordoni T; Tiboni M; Aluigi A; Casettari L
    Int J Pharm; 2023 Nov; 647():123489. PubMed ID: 37805150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics.
    Shen Y; Gwak H; Han B
    Analyst; 2024 Jan; 149(3):614-637. PubMed ID: 38083968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development.
    Mehta M; Bui TA; Yang X; Aksoy Y; Goldys EM; Deng W
    ACS Mater Au; 2023 Nov; 3(6):600-619. PubMed ID: 38089666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufacturing Considerations for the Development of Lipid Nanoparticles Using Microfluidics.
    Roces CB; Lou G; Jain N; Abraham S; Thomas A; Halbert GW; Perrie Y
    Pharmaceutics; 2020 Nov; 12(11):. PubMed ID: 33203082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic approaches for producing lipid-based nanoparticles for drug delivery applications.
    Piunti C; Cimetta E
    Biophys Rev (Melville); 2023 Sep; 4(3):031304. PubMed ID: 38505779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisolvent fabrication of monodisperse liposomes using novel ultrasonic microreactors: Process optimization, performance comparison and intensification effect.
    Peng C; Zhu X; Zhang J; Zhao W; Jia J; Wu Z; Yu Z; Dong Z
    Ultrason Sonochem; 2024 Feb; 103():106769. PubMed ID: 38266590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application.
    Carvalho BG; Ceccato BT; Michelon M; Han SW; de la Torre LG
    Pharmaceutics; 2022 Jan; 14(1):. PubMed ID: 35057037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Production of Nanoscale Liposomes Using a 3D-Printed Reactor-In-A-Centrifuge: Formulation, Characterisation, and Super-Resolution Imaging.
    He Y; Grandi D; Chandradoss S; LuTheryn G; Cidonio G; Nunes Bastos R; Pereno V; Carugo D
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Scalable Microfluidic Platform for Nanoparticle Formulation: For Exploratory- and Industrial-Level Scales.
    Seder I; Zheng T; Zhang J; Rojas CC; Helalat SH; Téllez RC; Sun Y
    Nano Lett; 2024 May; 24(17):5132-5138. PubMed ID: 38588326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery.
    Saunders C; de Villiers CA; Stevens MM
    AAPS J; 2023 Oct; 25(6):94. PubMed ID: 37783923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herringbone-Patterned 3D-Printed Devices as Alternatives to Microfluidics for Reproducible Production of Lipid Polymer Hybrid Nanoparticles.
    Bokare A; Takami A; Kim JH; Dong A; Chen A; Valerio R; Gunn S; Erogbogbo F
    ACS Omega; 2019 Mar; 4(3):4650-4657. PubMed ID: 31459652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Particle sorting method based on swirl induction.
    Hu S; Zhang Q; Ou Z; Dang Y
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37909455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.