BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35472511)

  • 21. Microfluidic paclitaxel-loaded lipid nanoparticle formulations for chemotherapy.
    Jaradat E; Weaver E; Meziane A; Lamprou DA
    Int J Pharm; 2022 Nov; 628():122320. PubMed ID: 36272514
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations.
    Ballacchino G; Weaver E; Mathew E; Dorati R; Genta I; Conti B; Lamprou DA
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic formulation of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer.
    Qiu J; Tomeh MA; Jin Y; Zhang B; Zhao X
    J Colloid Interface Sci; 2023 Jul; 642():810-819. PubMed ID: 37043939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs.
    Terada T; Kanou M; Hashimoto Y; Tanimoto M; Sugimoto M
    J Pharm Sci; 2022 Jun; 111(6):1709-1718. PubMed ID: 34863973
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the formation mechanism of lipid nanoparticles in microfluidic devices with chaotic micromixers.
    Maeki M; Fujishima Y; Sato Y; Yasui T; Kaji N; Ishida A; Tani H; Baba Y; Harashima H; Tokeshi M
    PLoS One; 2017; 12(11):e0187962. PubMed ID: 29182626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems.
    Maeki M; Kimura N; Sato Y; Harashima H; Tokeshi M
    Adv Drug Deliv Rev; 2018 Mar; 128():84-100. PubMed ID: 29567396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.
    Xu Z; Lu C; Riordon J; Sinton D; Moffitt MG
    Langmuir; 2016 Dec; 32(48):12781-12789. PubMed ID: 27934536
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidics for pharmaceutical nanoparticle fabrication: The truth and the myth.
    Hamdallah SI; Zoqlam R; Erfle P; Blyth M; Alkilany AM; Dietzel A; Qi S
    Int J Pharm; 2020 Jun; 584():119408. PubMed ID: 32407942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique.
    Arduino I; Liu Z; Rahikkala A; Figueiredo P; Correia A; Cutrignelli A; Denora N; Santos HA
    Acta Biomater; 2021 Feb; 121():566-578. PubMed ID: 33326887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.
    Martins JP; Torrieri G; Santos HA
    Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust manufacturing of lipid-polymer nanoparticles through feedback control of parallelized swirling microvortices.
    Toth MJ; Kim T; Kim Y
    Lab Chip; 2017 Aug; 17(16):2805-2813. PubMed ID: 28726923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics.
    Martins C; Sarmento B
    Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single pot organic solvent-free thermocycling technology for siRNA-ionizable LNPs: a proof-of-concept approach for alternative to microfluidics.
    De A; Ko YT
    Drug Deliv; 2022 Dec; 29(1):2644-2657. PubMed ID: 35949146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution.
    Nakamura T; Kawai M; Sato Y; Maeki M; Tokeshi M; Harashima H
    Mol Pharm; 2020 Mar; 17(3):944-953. PubMed ID: 31990567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers.
    Le NHA; Van Phan H; Yu J; Chan HK; Neild A; Alan T
    Int J Nanomedicine; 2018; 13():1353-1359. PubMed ID: 29563792
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of Microfluidics to Prepare Lipid-Based Nanocarriers.
    Vogelaar A; Marcotte S; Cheng J; Oluoch B; Zaro J
    Pharmaceutics; 2023 Mar; 15(4):. PubMed ID: 37111539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Volumetric Scalability of Microfluidic and Semi-Batch Silk Nanoprecipitation Methods.
    Matthew SAL; Rezwan R; Perrie Y; Seib FP
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic technologies for nanoparticle formation.
    Tian F; Cai L; Liu C; Sun J
    Lab Chip; 2022 Feb; 22(3):512-529. PubMed ID: 35048096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.