BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 35472723)

  • 1. β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes.
    Lee S; Xu H; Van Vleck A; Mawla AM; Li AM; Ye J; Huising MO; Annes JP
    Diabetes; 2022 Jul; 71(7):1439-1453. PubMed ID: 35472723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succinate dehydrogenase/complex II is critical for metabolic and epigenetic regulation of T cell proliferation and inflammation.
    Chen X; Sunkel B; Wang M; Kang S; Wang T; Gnanaprakasam JNR; Liu L; Cassel TA; Scott DA; Muñoz-Cabello AM; Lopez-Barneo J; Yang J; Lane AN; Xin G; Stanton BZ; Fan TW; Wang R
    Sci Immunol; 2022 Apr; 7(70):eabm8161. PubMed ID: 35486677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial succinate dehydrogenase is involved in stimulus-secretion coupling and endogenous ROS formation in murine beta cells.
    Edalat A; Schulte-Mecklenbeck P; Bauer C; Undank S; Krippeit-Drews P; Drews G; Düfer M
    Diabetologia; 2015 Jul; 58(7):1532-41. PubMed ID: 25874444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A suppressor of dioxygenase inhibition in a yeast model of SDH deficiency.
    Beimers W; Braun M; Schwinefus K; Pearson K; Wilbanks B; Maher LJ
    Endocr Relat Cancer; 2022 May; 29(6):345-358. PubMed ID: 35315791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency.
    Alston CL; Davison JE; Meloni F; van der Westhuizen FH; He L; Hornig-Do HT; Peet AC; Gissen P; Goffrini P; Ferrero I; Wassmer E; McFarland R; Taylor RW
    J Med Genet; 2012 Sep; 49(9):569-77. PubMed ID: 22972948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Succinate dehydrogenase deficiency is associated with decreased 5-hydroxymethylcytosine production in gastrointestinal stromal tumors: implications for mechanisms of tumorigenesis.
    Mason EF; Hornick JL
    Mod Pathol; 2013 Nov; 26(11):1492-7. PubMed ID: 23743927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MITOCHONDRIA: Succinate dehydrogenase subunit B-associated phaeochromocytoma and paraganglioma.
    Dona M; Neijman K; Timmers HJLM
    Int J Biochem Cell Biol; 2021 May; 134():105949. PubMed ID: 33609747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency.
    Jackson CB; Nuoffer JM; Hahn D; Prokisch H; Haberberger B; Gautschi M; Häberli A; Gallati S; Schaller A
    J Med Genet; 2014 Mar; 51(3):170-5. PubMed ID: 24367056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Succinate Dehydrogenase Complex: An Updated Review.
    Rasheed MRHA; Tarjan G
    Arch Pathol Lab Med; 2018 Dec; 142(12):1564-1570. PubMed ID: 30289269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genetic basis of isolated mitochondrial complex II deficiency.
    Fullerton M; McFarland R; Taylor RW; Alston CL
    Mol Genet Metab; 2020; 131(1-2):53-65. PubMed ID: 33162331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinate dehydrogenase deficiency in human.
    Brière JJ; Favier J; El Ghouzzi V; Djouadi F; Bénit P; Gimenez AP; Rustin P
    Cell Mol Life Sci; 2005 Oct; 62(19-20):2317-24. PubMed ID: 16143825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Succinate dehydrogenase deficiency in a chromaffin cell model retains metabolic fitness through the maintenance of mitochondrial NADH oxidoreductase function.
    Kľučková K; Thakker A; Vettore L; Escribano-Gonzalez C; Hindshaw RL; Tearle JLE; Goncalves J; Kaul B; Lavery GG; Favier J; Tennant DA
    FASEB J; 2020 Jan; 34(1):303-315. PubMed ID: 31914648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) - a review.
    Miettinen M; Lasota J
    Int J Biochem Cell Biol; 2014 Aug; 53():514-9. PubMed ID: 24886695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes.
    Xie J; Herbert TP
    Cell Mol Life Sci; 2012 Apr; 69(8):1289-304. PubMed ID: 22068611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic and functional specialisations of the pancreatic beta cell: gene disallowance, mitochondrial metabolism and intercellular connectivity.
    Rutter GA; Georgiadou E; Martinez-Sanchez A; Pullen TJ
    Diabetologia; 2020 Oct; 63(10):1990-1998. PubMed ID: 32894309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of mitochondrial succinate dehydrogenase in human health and disease.
    Cao K; Xu J; Cao W; Wang X; Lv W; Zeng M; Zou X; Liu J; Feng Z
    Free Radic Biol Med; 2023 Oct; 207():247-259. PubMed ID: 37490987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of succinate dehydrogenase deficiency and oncometabolites in gastrointestinal stromal tumors.
    Zhao Y; Feng F; Guo QH; Wang YP; Zhao R
    World J Gastroenterol; 2020 Sep; 26(34):5074-5089. PubMed ID: 32982110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression.
    Das A; Durrant D; Koka S; Salloum FN; Xi L; Kukreja RC
    J Biol Chem; 2014 Feb; 289(7):4145-60. PubMed ID: 24371138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene of the month: SDH.
    Aldera AP; Govender D
    J Clin Pathol; 2018 Feb; 71(2):95-97. PubMed ID: 29070651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.