These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35472863)

  • 1. Aspherical liquid crystal lenses based on a variable transmission electrode.
    Bennis N; Jankowski T; Morawiak P; Spadlo A; Zografopoulos DC; Sánchez-Pena JM; López-Higuera JM; Algorri JF
    Opt Express; 2022 Apr; 30(8):12237-12247. PubMed ID: 35472863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive-negative tunable liquid crystal lenses based on a microstructured transmission line.
    Algorri JF; Morawiak P; Bennis N; Zografopoulos DC; Urruchi V; Rodríguez-Cobo L; Jaroszewicz LR; Sánchez-Pena JM; López-Higuera JM
    Sci Rep; 2020 Jun; 10(1):10153. PubMed ID: 32576870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid crystal lens array with positive and negative focal lengths.
    Feng W; Liu Z; Ye M
    Opt Express; 2022 Aug; 30(16):28941-28953. PubMed ID: 36299080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.
    Milton H; Brimicombe P; Morgan P; Gleeson H; Clamp J
    Opt Express; 2012 May; 20(10):11159-65. PubMed ID: 22565739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refractive Fresnel liquid crystal lenses driven by two voltages.
    Feng W; Ye M
    Opt Express; 2024 Jan; 32(1):662-676. PubMed ID: 38175090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for increasing the utilization rate of birefringence in liquid crystal lenses.
    Feng W; Ye M
    Opt Express; 2023 Nov; 31(24):40845-40855. PubMed ID: 38041375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focus-tunable liquid lens with an aspherical membrane for improved central and peripheral resolutions at high diopters.
    Wei K; Huang H; Wang Q; Zhao Y
    Opt Express; 2016 Feb; 24(4):3929-39. PubMed ID: 26907046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically variable liquid crystal lenses for ophthalmic distance accommodation.
    Galstian T; Asatryan K; Presniakov V; Zohrabyan A
    Opt Express; 2019 Jun; 27(13):18803-18817. PubMed ID: 31252817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspherical lens shapes for focusing synchrotron beams.
    Sanchez del Rio M; Alianelli L
    J Synchrotron Radiat; 2012 May; 19(Pt 3):366-74. PubMed ID: 22514171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface localized polymer aligned liquid crystal lens.
    Lu L; Sergan V; Van Heugten T; Duston D; Bhowmik A; Bos PJ
    Opt Express; 2013 Mar; 21(6):7133-8. PubMed ID: 23546096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes.
    Chiu CW; Lin YC; Chao PC; Fuh AY
    Opt Express; 2008 Nov; 16(23):19277-84. PubMed ID: 19582020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro Aspheric Convex Lenses Fabricated by Precise Scraping.
    Lin MJ
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-voltage tunable liquid crystal lens fabricated with self-assembled polymer gravel arrays.
    Hsu CJ; Selvaraj P; Huang CY
    Opt Express; 2020 Mar; 28(5):6582-6593. PubMed ID: 32225903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of aspherical lens manipulated by electrostatic field.
    Zhan Z; Wang K; Yao H; Cao Z
    Appl Opt; 2009 Aug; 48(22):4375-80. PubMed ID: 19649041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid crystal lens with a shiftable optical axis.
    Feng W; Liu Z; Ye M
    Opt Express; 2023 May; 31(10):15523-15536. PubMed ID: 37157652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrically tunable-focusing liquid crystal lens with a low voltage and simple electrodes.
    Lin HC; Lin YH
    Opt Express; 2012 Jan; 20(3):2045-52. PubMed ID: 22330445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molded high curvature core-aligned micro-lenses for single-mode fibers.
    Guessoum A; Hajj T; Bouaziz D; Chabrol G; Pfeiffer P; Demagh NE; Lecler S
    Appl Opt; 2022 Sep; 61(26):7741-7747. PubMed ID: 36256376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power profiles of multifocal contact lenses and their interpretation.
    Plainis S; Atchison DA; Charman WN
    Optom Vis Sci; 2013 Oct; 90(10):1066-77. PubMed ID: 23995515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical beam-shaping design based on aspherical lenses for circularization, collimation, and expansion of elliptical laser beams.
    Serkan M; Kirkici H
    Appl Opt; 2008 Jan; 47(2):230-41. PubMed ID: 18188205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid crystal microlens array with positive and negative focal lengths based on a patterned electrode.
    Xu M; Xue Y; Li S; Zhang L; Lu H
    Appl Opt; 2022 Apr; 61(10):2721-2726. PubMed ID: 35471343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.