These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 35472892)

  • 1. Quarter acoustic period pulse compression using stimulated Brillouin scattering in PF-5060.
    Liu Z; Fan R; Jin D; Luo T; Li S; Li N; Li S; Wang Y; Lu Z
    Opt Express; 2022 Apr; 30(8):12586-12595. PubMed ID: 35472892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-repetition-rate, quarter acoustic wave oscillation period pulse compression using transient stimulated Brillouin scattering.
    Cao C; Wang Y; Yue J; Meng Z; Li K; Yu Y; Bai Z; Lu Z
    Opt Express; 2022 Sep; 30(19):33721-33732. PubMed ID: 36242400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High temporal waveform fidelity stimulated Brillouin scattering phase conjugate mirror using Novec-7500.
    Fan R; Liu Z; Jin D; Luo T; Li N; Li S; Wang Y; Xia Y; Lu Z
    Opt Express; 2023 Jan; 31(2):1878-1887. PubMed ID: 36785213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids.
    Feng C; Xu X; Diels JC
    Opt Express; 2017 May; 25(11):12421-12434. PubMed ID: 28786598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime.
    Liu Z; Wang Y; Wang Y; Li S; Bai Z; Lin D; He W; Lu Z
    Opt Express; 2018 Mar; 26(5):5701-5710. PubMed ID: 29529772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering.
    Liu Z; Wang Y; Bai Z; Wang Y; Jin D; Wang H; Yuan H; Lin D; Lu Z
    Opt Express; 2018 Sep; 26(18):23051-23060. PubMed ID: 30184961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering.
    Long X; Zou W; Chen J
    Opt Express; 2016 Mar; 24(5):5162-5171. PubMed ID: 29092343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.
    Zhu X; Wang Y; Lu Z; Zhang H
    Opt Express; 2015 Sep; 23(18):23318-28. PubMed ID: 26368433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reliable Stimulated Brillouin Scattering Compression of Nd:YAG Laser Pulses with Liquid Fluorocarbon for Long-Time Operation at 10 Hz.
    Kmetik V; Fiedorowicz H; Andreev AA; Witte KJ; Daido H; Fujita H; Nakatsuka M; Yamanaka T
    Appl Opt; 1998 Oct; 37(30):7085-90. PubMed ID: 18301529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous generation of guided-acoustic-wave Brillouin scattering and stimulated-Brillouin-scattering in hybrid As
    Saxena B; Baker C; Bao X; Chen L
    Opt Express; 2019 May; 27(10):13734-13743. PubMed ID: 31163832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of acoustic wave inertia and its implication to slow light via stimulated Brillouin scattering in an extended medium.
    Kovalev VI; Kotova NE; Harrison RG
    Opt Express; 2009 Feb; 17(4):2826-33. PubMed ID: 19219187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression.
    Yuan H; Wang Y; Lu Z; Wang Y; Liu Z; Bai Z; Cui C; Liu R; Zhang H; Hasi W
    Opt Express; 2017 Jun; 25(13):14378-14388. PubMed ID: 28789024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pump recycling technique on stimulated Brillouin scattering threshold: a theoretical model.
    Al-Asadi HA; Al-Mansoori MH; Ajiya M; Hitam S; Saripan MI; Mahdi MA
    Opt Express; 2010 Oct; 18(21):22339-47. PubMed ID: 20941134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-nanosecond stimulated Brillouin scattering pulse compression using HT270 for kHz repetition rate operation.
    Wang H; Cha S; Kong HJ; Wang Y; Lu Z
    Opt Express; 2019 Oct; 27(21):29789-29802. PubMed ID: 31684236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review: distributed time-domain sensors based on Brillouin scattering and FWM enhanced SBS for temperature, strain and acoustic wave detection.
    Bao X; Zhou Z; Wang Y
    Photonix; 2021; 2(1):14. PubMed ID: 34841256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing sub-ns pulse compression for high energy application.
    Xu X; Feng C; Diels JC
    Opt Express; 2014 Jun; 22(11):13904-15. PubMed ID: 24921582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of sub-nanosecond pulse compression based on frequency-detuning SBS.
    Liu F; Wang Y; Cao C; Meng Z; Man Z; Bai Z; Lu Z
    Opt Express; 2024 Jan; 32(2):2281-2292. PubMed ID: 38297762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow and fast light via SBS in optical fibers for short pulses and broadband pump.
    Kalosha VP; Chen L; Bao X
    Opt Express; 2006 Dec; 14(26):12693-703. PubMed ID: 19532161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal suppression of high-repetition rate SBS pulse compression in liquid media.
    Wang H; Seongwoo C; Kong HJ; Wang Y; Lu Z
    Opt Express; 2022 Oct; 30(21):38995-39013. PubMed ID: 36258451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain characteristics of stimulated Brillouin scattering in fused silica.
    Chen B; Bai Z; Hun X; Wang J; Cui C; Qi Y; Yan B; Ding J; Wang K; Wang Y; Lu Z
    Opt Express; 2023 Feb; 31(4):5699-5707. PubMed ID: 36823843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.