These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35472943)

  • 1. Estimation of turbulence parameters in the atmospheric boundary layer of the Bohai Sea, China, by coherent Doppler lidar and mesoscale model.
    Jin X; Song X; Yang Y; Wang M; Shao S; Zheng H
    Opt Express; 2022 Apr; 30(8):13263-13277. PubMed ID: 35472943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation and characterization of the refractive index structure constant within the marine atmospheric boundary layer.
    Zhang H; Zhu L; Sun G; Zhang K; Xu M; Liu N; Chen D; Wu Y; Cui S; Luo T; Li X; Weng N
    Appl Opt; 2022 Nov; 61(33):9762-9772. PubMed ID: 36606804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesoscale optical turbulence simulations above Tibetan Plateau: first attempt.
    Qing C; Wu X; Li X; Luo T; Su C; Zhu W
    Opt Express; 2020 Feb; 28(4):4571-4586. PubMed ID: 32121691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Heavy Pollution Episode in Tianjin Based on UAV Meteorological Sounding and Numerical Model].
    Yang X; Cai ZY; Han SQ; Shi J; Tang YX; Jiang M; Qiu XB
    Huan Jing Ke Xue; 2021 Jan; 42(1):9-18. PubMed ID: 33372452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of four different types of planetary boundary layer heights during a haze episode in Beijing.
    Shi Y; Hu F; Xiao Z; Fan G; Zhang Z
    Sci Total Environ; 2020 Apr; 711():134928. PubMed ID: 32000330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the turbulence energy dissipation rate in the atmospheric boundary layer from measurements of the radial wind velocity by micropulse coherent Doppler lidar.
    Banakh VA; Smalikho IN; Falits AV
    Opt Express; 2017 Sep; 25(19):22679-22692. PubMed ID: 29041575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercomparison of flux-, gradient-, and variance-based optical turbulence (
    Pierzyna M; Hartogensis O; Basu S; Saathof R
    Appl Opt; 2024 Jun; 63(16):E107-E119. PubMed ID: 38856605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar.
    Yuan J; Xia H; Wei T; Wang L; Yue B; Wu Y
    Opt Express; 2020 Dec; 28(25):37406-37418. PubMed ID: 33379576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multisensor evaluation of the asymmetric convective model, version 2, in southeast Texas.
    Kolling JS; Pleim JE; Jeffries HE; Vizuete W
    J Air Waste Manag Assoc; 2013 Jan; 63(1):41-53. PubMed ID: 23447863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of Characteristics and Causes of a Typical Haze Pollution in Beijing in the Winter of 2019].
    Lian HY; Yang X; Zhang P; Chen YZ; Yang XY; Zhao YX; He YJ; Zhao DT
    Huan Jing Ke Xue; 2021 May; 42(5):2121-2132. PubMed ID: 33884781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OVLI-TA: An Unmanned Aerial System for Measuring Profiles and Turbulence in the Atmospheric Boundary Layer.
    Alaoui-Sosse S; Durand P; Medina P; Pastor P; Lothon M; Cernov I
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inversion results of the atmospheric environment detecting airborne lidar in Qingdao, Bohai and Yellow Sea area].
    Mao MJ; Zhang YC; Fang HT; Qi FD; Shao SS; Hu HL; Zhou J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):834-8. PubMed ID: 18619310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of the atmospheric boundary layer height: A perspective on turbulent motion.
    Xian J; Luo H; Lu C; Lin X; Yang H; Zhang N
    Sci Total Environ; 2024 Apr; 919():170895. PubMed ID: 38346652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.
    Pal S
    Sci Total Environ; 2016 Jun; 554-555():17-25. PubMed ID: 26950615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some observational and modeling studies of the atmospheric boundary layer at Mississippi gulf coast for air pollution dispersion assessment.
    Yerramilli A; Challa VS; Indracanti J; Dasari H; Baham J; Patrick C; Young J; Hughes R; White LD; Hardy MG; Swanier S
    Int J Environ Res Public Health; 2008 Dec; 5(5):484-97. PubMed ID: 19151446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coherent Doppler lidar signal covariance including wind shear and wind turbulence.
    Frehlich R
    Appl Opt; 1994 Sep; 33(27):6472-81. PubMed ID: 20941185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the refractive index structure characteristic of air from coherent Doppler wind lidar data.
    Banakh VA; Smalikho IN; Rahm S
    Opt Lett; 2014 Aug; 39(15):4321-4. PubMed ID: 25078167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical simulation of the effect of refractive turbulence on coherent lidar return statistics in the atmosphere.
    Banakh VA; Smalikho IN; Werner C
    Appl Opt; 2000 Oct; 39(30):5403-14. PubMed ID: 18354537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Impacts of Urbanization on Winter Boundary Layer Meteorology and Aerosol Pollution in the Central Liaoning City Cluster, China.
    Wang D; Wang Y; Li X; Shen L; Zhang C; Ma Y; Zhao Z
    Toxics; 2023 Aug; 11(8):. PubMed ID: 37624188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the turbulence structure of deep katabatic flows on a gentle mesoscale slope.
    Stiperski I; Holtslag AAM; Lehner M; Hoch SW; Whiteman CD
    Q J R Meteorol Soc; 2020 Apr; 146(728):1206-1231. PubMed ID: 33208984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.