These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35472975)

  • 1. Designing fast and efficient electrically driven phase change photonics using foundry compatible waveguide-integrated microheaters.
    Erickson JR; Shah V; Wan Q; Youngblood N; Xiong F
    Opt Express; 2022 Apr; 30(8):13673-13689. PubMed ID: 35472975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ITO-based microheaters for reversible multi-stage switching of phase-change materials: towards miniaturized beyond-binary reconfigurable integrated photonics.
    Taghinejad H; Abdollahramezani S; Eftekhar AA; Fan T; Hosseinnia AH; Hemmatyar O; Eshaghian Dorche A; Gallmon A; Adibi A
    Opt Express; 2021 Jun; 29(13):20449-20462. PubMed ID: 34266134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material.
    Zhang H; Zhou L; Xu J; Wang N; Hu H; Lu L; Rahman BMA; Chen J
    Sci Bull (Beijing); 2019 Jun; 64(11):782-789. PubMed ID: 36659548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters.
    Zheng J; Zhu S; Xu P; Dunham S; Majumdar A
    ACS Appl Mater Interfaces; 2020 May; 12(19):21827-21836. PubMed ID: 32297737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater.
    Zheng J; Fang Z; Wu C; Zhu S; Xu P; Doylend JK; Deshmukh S; Pop E; Dunham S; Li M; Majumdar A
    Adv Mater; 2020 Aug; 32(31):e2001218. PubMed ID: 32588481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable dielectric metasurfaces by structuring the phase-change material.
    Zhang DQ; Pan GM; Jin ZW; Shu FZ; Jing XF; Hong Z; Shen CY
    Opt Express; 2022 Jan; 30(3):4312-4326. PubMed ID: 35209670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Laser Imprinting of Phase Change Photonic Structures in Integrated Waveguides.
    Menshikov E; Lazarenko P; Kovalyuk V; Dubkov S; Maslova N; Prokhodtsov A; Vorobyov A; Kozyukhin S; Goltsman G; Sinev IS
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38345-38354. PubMed ID: 39010705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices.
    Raeis-Hosseini N; Rho J
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28878196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subwavelength grating waveguide filter based on cladding modulation with a phase-change material grating.
    Badri SH; Farkoush SG
    Appl Opt; 2021 Apr; 60(10):2803-2810. PubMed ID: 33798155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a Ge
    Xiong Y; Zhang G; Tian Y; Wang JL; Wang Y; Zhuo Z; Zhao X
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the phase change process in a GST-loaded silicon waveguide and MMI.
    Zhang H; Yang X; Lu L; Chen J; Rahman BMA; Zhou L
    Opt Express; 2021 Feb; 29(3):3503-3514. PubMed ID: 33770947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials.
    Chen X; Xue Y; Sun Y; Shen J; Song S; Zhu M; Song Z; Cheng Z; Zhou P
    Adv Mater; 2023 Sep; 35(37):e2203909. PubMed ID: 35713563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency.
    Abdollahramezani S; Hemmatyar O; Taghinejad M; Taghinejad H; Krasnok A; Eftekhar AA; Teichrib C; Deshmukh S; El-Sayed MA; Pop E; Wuttig M; Alù A; Cai W; Adibi A
    Nat Commun; 2022 Mar; 13(1):1696. PubMed ID: 35354813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss ultrafast and nonvolatile all-optical switch enabled by all-dielectric phase change materials.
    He Q; Liu Z; Lu Y; Ban G; Tong H; Wang Y; Miao X
    iScience; 2022 Jun; 25(6):104375. PubMed ID: 35620422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of an electric-driven nonvolatile low-energy-consumption phase change optical switch.
    Li Y; Liu FR; Han G; Chen QY; Zhang YZ; Xie XX; Zhang LL; Lian YB
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34171853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Color Generation with Electrically Tunable Thin Film Optical Coatings.
    Sreekanth KV; Medwal R; Srivastava YK; Manjappa M; Rawat RS; Singh R
    Nano Lett; 2021 Dec; 21(23):10070-10075. PubMed ID: 34802245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiphysics simulations of a cylindrical waveguide optical switch using phase change materials on silicon.
    Malek Mohammad A; Nikoufard M; Abdolghaderi S
    Sci Rep; 2024 May; 14(1):10730. PubMed ID: 38730237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optoelectronic framework enabled by low-dimensional phase-change films.
    Hosseini P; Wright CD; Bhaskaran H
    Nature; 2014 Jul; 511(7508):206-11. PubMed ID: 25008527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconfigurable Micro/Nano-Optical Devices Based on Phase Transitions: From Materials, Mechanisms to Applications.
    Li C; Pan R; Gu C; Guo H; Li J
    Adv Sci (Weinh); 2024 May; 11(20):e2306344. PubMed ID: 38489745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Resolved Temperature Mapping Leveraging the Strong Thermo-Optic Effect in Phase-Change Materials.
    Nobile NA; Erickson JR; Ríos C; Zhang Y; Hu J; Vitale SA; Xiong F; Youngblood N
    ACS Photonics; 2023 Oct; 10(10):3576-3585. PubMed ID: 37869555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.