These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35473001)

  • 1. Dissipation-driven entanglement between two microwave fields in a four-mode hybrid cavity optomechanical system.
    Liao CG; Shang X; Xie H; Lin XM
    Opt Express; 2022 Mar; 30(7):10306-10316. PubMed ID: 35473001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-efficiency entanglement of microwave fields in cavity opto-magnomechanical systems.
    Di K; Tan S; Wang L; Cheng A; Wang X; Liu Y; Du J
    Opt Express; 2023 Aug; 31(18):29491-29503. PubMed ID: 37710748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative generation of significant amount of mechanical entanglement in a coupled optomechanical system.
    Chen RX; Liao CG; Lin XM
    Sci Rep; 2017 Nov; 7(1):14497. PubMed ID: 29101336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity.
    Liu ZQ; Liu L; Meng ZZ; Tan L; Liu WM
    Opt Express; 2024 Jan; 32(1):722-741. PubMed ID: 38175094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of mechanical squeezing and entanglement via mechanical modulations.
    Gu WJ; Yi Z; Sun LH; Yan Y
    Opt Express; 2018 Nov; 26(23):30773-30785. PubMed ID: 30469969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum correlation in a nano-electro-optomechanical system enhanced by an optical parametric amplifier and Coulomb-type interaction.
    Mekonnen HD; Tesfahannes TG; Darge TY; Kumela AG
    Sci Rep; 2023 Aug; 13(1):13800. PubMed ID: 37612322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of robust optical entanglement in cavity optomagnonics.
    Xie H; He LW; Liao CG; Chen ZH; Lin XM
    Opt Express; 2023 Feb; 31(5):7994-8004. PubMed ID: 36859918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady motional entanglement between two distant levitated nanoparticles.
    Li G; Yin ZQ
    Opt Express; 2024 Feb; 32(5):7377-7390. PubMed ID: 38439419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust photon entanglement via quantum interference in optomechanical interfaces.
    Tian L
    Phys Rev Lett; 2013 Jun; 110(23):233602. PubMed ID: 25167490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-resistant generation of robust entanglement with blue-detuning driving and mechanical gain.
    Wang T; Wang L; Liu YM; Bai CH; Wang DY; Wang HF; Zhang S
    Opt Express; 2019 Oct; 27(21):29581-29593. PubMed ID: 31684217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surviving entanglement in optic-microwave conversion by an electro-optomechanical system.
    Jo Y; Lee SY; Ihn YS; Kim D; Kim Z; Kim DY
    Opt Express; 2021 Mar; 29(5):6834-6844. PubMed ID: 33726195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement generation and steering implementation in a double-cavity-magnon hybrid system.
    Cong LJ; Luo YX; Zheng ZG; Liu HY; Ming Y; Yang RC
    Opt Express; 2023 Oct; 31(21):34021-34033. PubMed ID: 37859167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entanglement Thresholds of Doubly Parametric Quantum Transducers.
    Rau CL; Kyle A; Kwiatkowski A; Shojaee E; Teufel JD; Lehnert KW; Dennis T
    Phys Rev Appl; 2022 Apr; 17(4):. PubMed ID: 36632278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving macroscopic entanglement with nonlocal mechanical squeezing.
    Hu CS; Lin XY; Shen LT; Su WJ; Jiang YK; Wu H; Zheng SB
    Opt Express; 2020 Jan; 28(2):1492-1506. PubMed ID: 32121858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field.
    Zhang W; Wang T; Han X; Zhang S; Wang HF
    Opt Express; 2022 Mar; 30(7):10969-10980. PubMed ID: 35473050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reservoir-engineered entanglement in optomechanical systems.
    Wang YD; Clerk AA
    Phys Rev Lett; 2013 Jun; 110(25):253601. PubMed ID: 23829736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetostrictively Induced Stationary Entanglement between Two Microwave Fields.
    Yu M; Shen H; Li J
    Phys Rev Lett; 2020 May; 124(21):213604. PubMed ID: 32530657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification.
    Qin W; Miranowicz A; Li PB; Lü XY; You JQ; Nori F
    Phys Rev Lett; 2018 Mar; 120(9):093601. PubMed ID: 29547303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground-State Cooling and High-Fidelity Quantum Transduction via Parametrically Driven Bad-Cavity Optomechanics.
    Lau HK; Clerk AA
    Phys Rev Lett; 2020 Mar; 124(10):103602. PubMed ID: 32216414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.
    Nunnenkamp A; Sudhir V; Feofanov AK; Roulet A; Kippenberg TJ
    Phys Rev Lett; 2014 Jul; 113(2):023604. PubMed ID: 25062181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.