These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 35473003)
1. Estimation of the lake trophic state index (TSI) using hyperspectral remote sensing in Northeast China. Lyu L; Song K; Wen Z; Liu G; Shang Y; Li S; Tao H; Wang X; Hou J Opt Express; 2022 Mar; 30(7):10329-10345. PubMed ID: 35473003 [TBL] [Abstract][Full Text] [Related]
2. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Zhang Y; Zhou Y; Shi K; Qin B; Yao X; Zhang Y Water Res; 2018 Mar; 131():255-263. PubMed ID: 29304379 [TBL] [Abstract][Full Text] [Related]
3. Trophic state modeling for shallow freshwater reservoir: a new approach. Markad AT; Landge AT; Nayak BB; Inamdar AB; Mishra AK Environ Monit Assess; 2019 Aug; 191(9):586. PubMed ID: 31440835 [TBL] [Abstract][Full Text] [Related]
4. A satellite-based hybrid model for trophic state evaluation in inland waters across China. Liu Y; Ke Y; Wu H; Zhang C; Chen X Environ Res; 2023 May; 225():115509. PubMed ID: 36801233 [TBL] [Abstract][Full Text] [Related]
5. An optical mechanism-based deep learning approach for deriving water trophic state of China's lakes from Landsat images. Zhang D; Shi K; Wang W; Wang X; Zhang Y; Qin B; Zhu M; Dong B; Zhang Y Water Res; 2024 Mar; 252():121181. PubMed ID: 38301525 [TBL] [Abstract][Full Text] [Related]
6. Trophic state and limiting nutrient evaluations using trophic state/level index methods: a case study of Borçka Dam Lake. Bilgin A Environ Monit Assess; 2020 Nov; 192(12):794. PubMed ID: 33244660 [TBL] [Abstract][Full Text] [Related]
7. Characterizing Trophic State in Tropical/Subtropical Reservoirs: Deviations among Indexes in the Lower Latitudes. Cunha DGF; Finkler NR; Lamparelli MC; Calijuri MDC; Dodds WK; Carlson RE Environ Manage; 2021 Oct; 68(4):491-504. PubMed ID: 34402965 [TBL] [Abstract][Full Text] [Related]
8. Trophic state assessment of Bhindawas Lake, Haryana, India. Saluja R; Garg JK Environ Monit Assess; 2017 Jan; 189(1):32. PubMed ID: 28012084 [TBL] [Abstract][Full Text] [Related]
9. Quantifying the trophic status of lakes using total light absorption of optically active components. Wen Z; Song K; Liu G; Shang Y; Fang C; Du J; Lyu L Environ Pollut; 2019 Feb; 245():684-693. PubMed ID: 30500747 [TBL] [Abstract][Full Text] [Related]
10. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data. Song K; Wang Q; Liu G; Jacinthe PA; Li S; Tao H; Du Y; Wen Z; Wang X; Guo W; Wang Z; Shi K; Du J; Shang Y; Lyu L; Hou J; Zhang B; Cheng S; Lyu Y; Fei L Sci Total Environ; 2022 Mar; 810():151188. PubMed ID: 34710411 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of trophic state for inland waters through combining Forel-Ule Index and inherent optical properties. Liu Y; Wu H; Wang S; Chen X; Kimball JS; Zhang C; Gao H; Guo P Sci Total Environ; 2022 May; 820():153316. PubMed ID: 35066030 [TBL] [Abstract][Full Text] [Related]
12. Temporal dependence of chlorophyll a-nutrient relationships in Lake Taihu: Drivers and management implications. Zou W; Zhu G; Xu H; Zhu M; Zhang Y; Qin B J Environ Manage; 2022 Mar; 306():114476. PubMed ID: 35051816 [TBL] [Abstract][Full Text] [Related]
13. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Yang Y; Zhang X; Gao W; Zhang Y; Hou X Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490 [TBL] [Abstract][Full Text] [Related]
14. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning? Xiong J; Lin C; Cao Z; Hu M; Xue K; Chen X; Ma R Water Res; 2022 May; 215():118213. PubMed ID: 35247602 [TBL] [Abstract][Full Text] [Related]
15. A comprehensive model for assessing lake eutrophication. Cai Q; Liu J; King L Ying Yong Sheng Tai Xue Bao; 2002 Dec; 13(12):1674-8. PubMed ID: 12682981 [TBL] [Abstract][Full Text] [Related]
16. Relationships between nutrient, chlorophyll a and Secchi depth in lakes of the Chinese Eastern Plains ecoregion: Implications for eutrophication management. Zou W; Zhu G; Cai Y; Vilmi A; Xu H; Zhu M; Gong Z; Zhang Y; Qin B J Environ Manage; 2020 Apr; 260():109923. PubMed ID: 32090794 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of algal chlorophyll and nutrient relations and the N:P ratios along with trophic status and light regime in 60 Korea reservoirs. Mamun M; Kwon S; Kim JE; An KG Sci Total Environ; 2020 Nov; 741():140451. PubMed ID: 32886973 [TBL] [Abstract][Full Text] [Related]
18. Modification of trophic level index with the contribution of macrophyte and its usage to classify trophic state of shallow lakes. Tao Y; Yu J Environ Sci Pollut Res Int; 2024 Feb; 31(6):9630-9641. PubMed ID: 38194176 [TBL] [Abstract][Full Text] [Related]
19. Eutrophication assessment of seasonal urban lakes in China Yangtze River Basin using Landsat 8-derived Forel-Ule index: A six-year (2013-2018) observation. Chen Q; Huang M; Tang X Sci Total Environ; 2020 Nov; 745():135392. PubMed ID: 31892484 [TBL] [Abstract][Full Text] [Related]
20. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques. Gao Y; Gao J; Yin H; Liu C; Xia T; Wang J; Huang Q J Environ Manage; 2015 Mar; 151():33-43. PubMed ID: 25528271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]