These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35473037)

  • 1. Efficient nano-photonic antennas based on dark states in quantum emitter rings.
    Moreno-Cardoner M; Holzinger R; Ritsch H
    Opt Express; 2022 Mar; 30(7):10779-10791. PubMed ID: 35473037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Properties of Concentric Nanorings of Quantum Emitters.
    Scheil V; Holzinger R; Moreno-Cardoner M; Ritsch H
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beaming light from a quantum emitter with a planar optical antenna.
    Checcucci S; Lombardi P; Rizvi S; Sgrignuoli F; Gruhler N; Dieleman FB; S Cataliotti F; Pernice WH; Agio M; Toninelli C
    Light Sci Appl; 2017 Apr; 6(4):e16245. PubMed ID: 30167241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective super- and subradiant dynamics between distant optical quantum emitters.
    Tiranov A; Angelopoulou V; van Diepen CJ; Schrinski B; Sandberg OAD; Wang Y; Midolo L; Scholz S; Wieck AD; Ludwig A; Sørensen AS; Lodahl P
    Science; 2023 Jan; 379(6630):389-393. PubMed ID: 36701463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity Antiresonance Spectroscopy of Dipole Coupled Subradiant Arrays.
    Plankensteiner D; Sommer C; Ritsch H; Genes C
    Phys Rev Lett; 2017 Sep; 119(9):093601. PubMed ID: 28949558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling a single solid-state quantum emitter to an array of resonant plasmonic antennas.
    Pfeiffer M; Atkinson P; Rastelli A; Schmidt OG; Giessen H; Lippitz M; Lindfors K
    Sci Rep; 2018 Feb; 8(1):3415. PubMed ID: 29467499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme multiexciton emission from deterministically assembled single-emitter subwavelength plasmonic patch antennas.
    Dhawan AR; Belacel C; Esparza-Villa JU; Nasilowski M; Wang Z; Schwob C; Hugonin JP; Coolen L; Dubertret B; Senellart P; Maître A
    Light Sci Appl; 2020; 9():33. PubMed ID: 32194947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bright single photon emitters with enhanced quantum efficiency in a two-dimensional semiconductor coupled with dielectric nano-antennas.
    Sortino L; Zotev PG; Phillips CL; Brash AJ; Cambiasso J; Marensi E; Fox AM; Maier SA; Sapienza R; Tartakovskii AI
    Nat Commun; 2021 Oct; 12(1):6063. PubMed ID: 34663795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Cavities and Individual Quantum Emitters in the Strong Coupling Limit.
    Bitton O; Haran G
    Acc Chem Res; 2022 Jun; 55(12):1659-1668. PubMed ID: 35649040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unidirectional emission of a quantum dot coupled to a nanoantenna.
    Curto AG; Volpe G; Taminiau TH; Kreuzer MP; Quidant R; van Hulst NF
    Science; 2010 Aug; 329(5994):930-3. PubMed ID: 20724630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption Engineering in an Ultrasubwavelength Quantum System.
    Jeannin M; Bonazzi T; Gacemi D; Vasanelli A; Li L; Davies AG; Linfield E; Sirtori C; Todorov Y
    Nano Lett; 2020 Jun; 20(6):4430-4436. PubMed ID: 32407632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Unity Light Collection Efficiency from Quantum Emitters in Boron Nitride by Coupling to Metallo-Dielectric Antennas.
    Li X; Scully RA; Shayan K; Luo Y; Strauf S
    ACS Nano; 2019 Jun; 13(6):6992-6997. PubMed ID: 31141657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems.
    Hu Z; Engel GS; Alharbi FH; Kais S
    J Chem Phys; 2018 Feb; 148(6):064304. PubMed ID: 29448771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic photon-emitter coupling in chiral photonic circuits.
    Söllner I; Mahmoodian S; Hansen SL; Midolo L; Javadi A; Kiršanskė G; Pregnolato T; El-Ella H; Lee EH; Song JD; Stobbe S; Lodahl P
    Nat Nanotechnol; 2015 Sep; 10(9):775-8. PubMed ID: 26214251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission.
    Hu H; Chen W; Han X; Wang K; Lu P
    Nanoscale; 2022 Feb; 14(6):2287-2295. PubMed ID: 35081195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid optical antenna with high directivity gain.
    Bonakdar A; Mohseni H
    Opt Lett; 2013 Aug; 38(15):2726-8. PubMed ID: 23903124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A subradiant optical mirror formed by a single structured atomic layer.
    Rui J; Wei D; Rubio-Abadal A; Hollerith S; Zeiher J; Stamper-Kurn DM; Gross C; Bloch I
    Nature; 2020 Jul; 583(7816):369-374. PubMed ID: 32669699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons.
    Bitton O; Gupta SN; Houben L; Kvapil M; Křápek V; Šikola T; Haran G
    Nat Commun; 2020 Jan; 11(1):487. PubMed ID: 31980624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching.
    Wientjes E; Renger J; Curto AG; Cogdell R; van Hulst NF
    Nat Commun; 2014 Jun; 5():4236. PubMed ID: 24953833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical nanorod antennas modeled as cavities for dipolar emitters: evolution of sub- and super-radiant modes.
    Taminiau TH; Stefani FD; van Hulst NF
    Nano Lett; 2011 Mar; 11(3):1020-4. PubMed ID: 21322590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.