These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35473067)

  • 1. Quantitative near-field characterization of surface plasmon polaritons on monocrystalline gold platelets.
    Casses LN; Kaltenecker KJ; Xiao S; Wubs M; Stenger N
    Opt Express; 2022 Mar; 30(7):11181-11191. PubMed ID: 35473067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultimate Limit for Optical Losses in Gold, Revealed by Quantitative Near-Field Microscopy.
    Lebsir Y; Boroviks S; Thomaschewski M; Bozhevolnyi SI; Zenin VA
    Nano Lett; 2022 Jul; 22(14):5759-5764. PubMed ID: 35787133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edge scattering of surface plasmons excited by scanning tunneling microscopy.
    Zhang Y; Boer-Duchemin E; Wang T; Rogez B; Comtet G; Le Moal E; Dujardin G; Hohenau A; Gruber C; Krenn JR
    Opt Express; 2013 Jun; 21(12):13938-48. PubMed ID: 23787583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-field observation of surface plasmon polaritons launched by V-shaped nanorods on a gold surface.
    Billot L; Mortier M; Aigouy L
    Appl Opt; 2015 Nov; 54(31):9326-30. PubMed ID: 26560589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons.
    Sannomiya T; Konečná A; Matsukata T; Thollar Z; Okamoto T; García de Abajo FJ; Yamamoto N
    Nano Lett; 2020 Jan; 20(1):592-598. PubMed ID: 31855432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation of direction-tunable surface plasmon polaritons by using a rectangular array of silver nanodisks.
    Yao S; Guo Z; Sun H; Huang H
    Opt Express; 2018 Aug; 26(16):20102-20110. PubMed ID: 30119325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscale surface plasmons: modelling and imaging using near-field scanning optical microscopy.
    Mayevsky AD; Davis TJ; Ballard PM; Henderson CA; Funston AM
    Opt Express; 2018 Sep; 26(18):23426-23435. PubMed ID: 30184843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Demonstration of Surface Plasmon Polaritons Reflection and Transmission Effects.
    Zheng L; Zywietz U; Evlyukhin A; Roth B; Overmeyer L; Reinhardt C
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31653086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct spatiotemporal imaging of femtosecond surface plasmon polaritons assisted with the opening of the two-color quantum pathway effect.
    Zhao Z; Lang P; Qin Y; Ji B; Song X; Lin J
    Opt Express; 2020 Jun; 28(13):19023-19033. PubMed ID: 32672188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Microscopy of Spin-Momentum-Locked Surface Plasmon Polaritons.
    Dai Y; Dąbrowski M; Apkarian VA; Petek H
    ACS Nano; 2018 Jul; 12(7):6588-6596. PubMed ID: 29883101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.
    Huber AJ; Ocelic N; Hillenbrand R
    J Microsc; 2008 Mar; 229(Pt 3):389-95. PubMed ID: 18331484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?
    Foley Iv JJ; Harutyunyan H; Rosenmann D; Divan R; Wiederrecht GP; Gray SK
    Sci Rep; 2015 Apr; 5():9929. PubMed ID: 25905685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Surface Plasmon Interferometry via Upconversion Photoluminescence Mapping.
    Yin A; Jing H; Wu Z; He Q; Wang Y; Lin Z; Liu Y; Ding M; Xu X; Fei Z; Jiang J; Huang Y; Duan X
    Research (Wash D C); 2019; 2019():8304824. PubMed ID: 31922140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fully automated dual-tip scanning near-field optical microscope for localized optical excitation and detection in the visible and near-infrared.
    Abbasirad N; Berzins J; Kollin K; Saravi S; Janunts N; Setzpfandt F; Pertsch T
    Rev Sci Instrum; 2019 May; 90(5):053705. PubMed ID: 31153284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing.
    Renger J; Quidant R; van Hulst N; Palomba S; Novotny L
    Phys Rev Lett; 2009 Dec; 103(26):266802. PubMed ID: 20366329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the transmission of surface plasmon polaritons across nano and micro gaps in gold stripes.
    Ghafoori G; Boneberg J; Leiderer P; Scheer E
    Opt Express; 2016 Jul; 24(15):17313-20. PubMed ID: 27464180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote grating-assisted excitation of narrow-band surface plasmons.
    Lee TW; Gray SK
    Opt Express; 2010 Nov; 18(23):23857-64. PubMed ID: 21164730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of a nanotip on a surface for the ultrafast probing of propagating surface plasmons.
    Ahn B; Schötz J; Okell WA; Süßmann F; Förg B; Kim SC; Kling MF; Kim D
    Opt Express; 2016 Jan; 24(1):92-101. PubMed ID: 26832240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral and mode properties of surface plasmon polariton waveguides studied by near-field excitation and leakage-mode radiation measurement.
    Pan MY; Lin EH; Wang L; Wei PK
    Nanoscale Res Lett; 2014; 9(1):430. PubMed ID: 25177228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation of propagating surface plasmons with a scanning tunnelling microscope.
    Wang T; Boer-Duchemin E; Zhang Y; Comtet G; Dujardin G
    Nanotechnology; 2011 Apr; 22(17):175201. PubMed ID: 21411910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.