These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 35473093)
1. Nanostructured multilayer hyperbolic metamaterials for high efficiency and selective solar absorption. Jiang X; Zhou L; Hu J; Wang T Opt Express; 2022 Mar; 30(7):11504-11513. PubMed ID: 35473093 [TBL] [Abstract][Full Text] [Related]
2. A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption. Su J; Chen G; Ma C; Zhang Q; Li X; Geng Y; Jia B; Luo H; Liu D Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607115 [TBL] [Abstract][Full Text] [Related]
3. Ultrabroadband light absorption based on photonic topological transitions in hyperbolic metamaterials. Jiang X; Wang T; Zhong Q; Yan R; Huang X Opt Express; 2020 Jan; 28(1):705-714. PubMed ID: 32118993 [TBL] [Abstract][Full Text] [Related]
4. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953 [TBL] [Abstract][Full Text] [Related]
5. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Lin KT; Lin H; Yang T; Jia B Nat Commun; 2020 Mar; 11(1):1389. PubMed ID: 32170054 [TBL] [Abstract][Full Text] [Related]
6. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion. Qi B; Chen W; Niu T; Mei Z Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702 [TBL] [Abstract][Full Text] [Related]
7. Ultra-broadband solar absorbers for high-efficiency thermophotovoltaics. Zhou J; Liu Z; Liu G; Pan P; Liu X; Tang C; Liu Z; Wang J Opt Express; 2020 Nov; 28(24):36476-36486. PubMed ID: 33379740 [TBL] [Abstract][Full Text] [Related]
8. Ultra-broadband, wide-angle plus-shape slotted metamaterial solar absorber design with absorption forecasting using machine learning. Patel SK; Parmar J; Katkar V Sci Rep; 2022 Jun; 12(1):10166. PubMed ID: 35715482 [TBL] [Abstract][Full Text] [Related]
9. Broadband Solar Absorber and Thermal Emitter Based on Single-Layer Molybdenum Disulfide. Liu W; Wu F; Yi Z; Tang Y; Yi Y; Wu P; Zeng Q Molecules; 2024 Sep; 29(18):. PubMed ID: 39339508 [TBL] [Abstract][Full Text] [Related]
10. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR. Jiang X; Wang T; Zhong Q; Yan R; Huang X Nanotechnology; 2020 Jul; 31(31):315202. PubMed ID: 32289755 [TBL] [Abstract][Full Text] [Related]
11. Perfect selective metamaterial solar absorbers. Wang H; Wang L Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927 [TBL] [Abstract][Full Text] [Related]
12. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C. Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608 [TBL] [Abstract][Full Text] [Related]
13. Designing ultrabroadband absorbers based on Bloch theorem and optical topological transition. Kan YH; Zhao CY; Fang X; Wang BX Opt Lett; 2017 May; 42(10):1879-1882. PubMed ID: 28504749 [TBL] [Abstract][Full Text] [Related]
14. An ultra-broadband and wide-angle absorber based on a TiN metamaterial for solar harvesting. Sun C; Liu H; Yang B; Zhang K; Zhang B; Wu X Phys Chem Chem Phys; 2022 Dec; 25(1):806-812. PubMed ID: 36510760 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle-on-Mirror Metamaterials for Full-Spectrum Selective Solar Energy Harvesting. Li Y; Lin C; Li K; Chi C; Huang B Nano Lett; 2022 Jul; 22(14):5659-5666. PubMed ID: 35709431 [TBL] [Abstract][Full Text] [Related]
16. Integrating Dual-Interfacial Liquid Metal Based Nanodroplet Architectures and Micro-Nanostructured Engineering for High Efficiency Solar Energy Harvesting. Yang S; Zhang Y; Bai J; He Y; Zhao X; Zhang J ACS Nano; 2022 Sep; 16(9):15086-15099. PubMed ID: 36069385 [TBL] [Abstract][Full Text] [Related]
17. Ultra-Broadband Solar Absorber and High-Efficiency Thermal Emitter from UV to Mid-Infrared Spectrum. Wu F; Shi P; Yi Z; Li H; Yi Y Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241609 [TBL] [Abstract][Full Text] [Related]
18. Broadband thin-film and metamaterial absorbers using refractory vanadium nitride and their thermal stability. Wang W; Wang H; Yu P; Sun K; Tong X; Lin F; Wu C; You Y; Xie W; Li Y; Yuan C; Govorov AO; Muskens OL; Xu H; Sun S; Wang Z Opt Express; 2021 Oct; 29(21):33456-33466. PubMed ID: 34809157 [TBL] [Abstract][Full Text] [Related]
19. Broadband absorption engineering of hyperbolic metafilm patterns. Ji D; Song H; Zeng X; Hu H; Liu K; Zhang N; Gan Q Sci Rep; 2014 Mar; 4():4498. PubMed ID: 24675706 [TBL] [Abstract][Full Text] [Related]
20. Broadband and Efficient Metamaterial Absorber Design Based on Gold-MgF2-Tungsten Hybrid Structure for Solar Thermal Application. Armghan A; Alsharari M; Aliqab K Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]