These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35473116)

  • 1. Generalised adaptive optics method for high-NA aberration-free refocusing in refractive-index-mismatched media.
    Cui J; Antonello J; Kirkpatrick AR; Salter PS; Booth MJ
    Opt Express; 2022 Mar; 30(7):11809-11824. PubMed ID: 35473116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.
    Kaye EA; Hertzberg Y; Marx M; Werner B; Navon G; Levoy M; Pauly KB
    Med Phys; 2012 Oct; 39(10):6254-63. PubMed ID: 23039661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aberration-free optical refocusing in high numerical aperture microscopy.
    Botcherby EJ; Juskaitis R; Booth MJ; Wilson T
    Opt Lett; 2007 Jul; 32(14):2007-9. PubMed ID: 17632625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffractive tunable lens for remote focusing in high-NA optical systems.
    Bawart M; May MA; Öttl T; Roider C; Bernet S; Schmidt M; Ritsch-Marte M; Jesacher A
    Opt Express; 2020 Aug; 28(18):26336-26347. PubMed ID: 32906907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-compensation of Zernike aberrations in Gaussian beam optics.
    Czuchnowski J; Prevedel R
    Opt Lett; 2021 Jul; 46(14):3480-3483. PubMed ID: 34264243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of remote focusing microscopes to magnification mismatch.
    Mohanan S; Corbett AD
    J Microsc; 2022 Nov; 288(2):95-105. PubMed ID: 33295652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass.
    Cumming BP; Turner MD; Schröder-Turk GE; Debbarma S; Luther-Davies B; Gu M
    Opt Express; 2014 Jan; 22(1):689-98. PubMed ID: 24515028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High NA objective lens wavefront aberration measurement using a cat-eye retroreflector and Zernike polynomial.
    Li P; Tang F; Wang X; Li J
    Opt Express; 2021 Sep; 29(20):31812-31835. PubMed ID: 34615266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable immersion microscopy with a high numerical aperture.
    Ishida K; Naruse K; Mizouchi Y; Ogawa Y; Matsushita M; Shimi T; Kimura H; Fujiyoshi S
    Opt Lett; 2021 Feb; 46(4):856-859. PubMed ID: 33577531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated aberration correction of arbitrary laser modes in high numerical aperture systems.
    Hering J; Waller EH; Von Freymann G
    Opt Express; 2016 Dec; 24(25):28500-28508. PubMed ID: 27958493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous compensation for aberration and axial elongation in three-dimensional laser nanofabrication by a high numerical-aperture objective.
    Cumming BP; Debbarma S; Luther-Davis B; Gu M
    Opt Express; 2013 Aug; 21(16):19135-41. PubMed ID: 23938828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended Nijboer-Zernike approach to aberration and birefringence retrieval in a high-numerical-aperture optical system.
    Braat JJ; Dirksen P; Janssen AJ; van Haver S; van de Nes AS
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2635-50. PubMed ID: 16396023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction.
    Booth MJ; Wilson T
    J Biomed Opt; 2001 Jul; 6(3):266-72. PubMed ID: 11516315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spherical aberration-free microscopy system for live brain imaging.
    Ue Y; Monai H; Higuchi K; Nishiwaki D; Tajima T; Okazaki K; Hama H; Hirase H; Miyawaki A
    Biochem Biophys Res Commun; 2018 Jun; 500(2):236-241. PubMed ID: 29649479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate.
    Sheppard CJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):2150-61. PubMed ID: 24322870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing specimen induced aberrations for high NA adaptive optical microscopy.
    Schwertner M; Booth M; Wilson T
    Opt Express; 2004 Dec; 12(26):6540-52. PubMed ID: 19488305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy.
    Yang Y; Chen W; Fan JL; Ji N
    Biomed Opt Express; 2021 Jan; 12(1):354-366. PubMed ID: 33520387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.