These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35473146)

  • 1. Spatially strongly confined atomic excitation via a two dimensional stimulated Raman adiabatic passage.
    Hamedi HR; Žlabys G; Ahufinger V; Halfmann T; Mompart J; Juzeliūnas G
    Opt Express; 2022 Apr; 30(9):13915-13930. PubMed ID: 35473146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates.
    Fritsch AR; Lu M; Reid GH; Piñeiro AM; Spielman IB
    Phys Rev A (Coll Park); 2020 May; 101(5):. PubMed ID: 34136731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bose-Einstein condensate confined in a one-dimensional ring stirred with a rotating delta link.
    Pérez-Obiol A; Cheon T
    Phys Rev E; 2020 Feb; 101(2-1):022212. PubMed ID: 32168626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Management of matter-wave solitons in Bose-Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential.
    Kengne E; Liu WM
    Phys Rev E; 2018 Jul; 98(1-1):012204. PubMed ID: 30110784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of Bose-Einstein Condensates Subject to the Pöschl-Teller Potential through Numerical and Variational Solutions of the Gross-Pitaevskii Equation.
    Pereira LC; Nascimento VAD
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical instability of 3D stationary and traveling planar dark solitons.
    Mithun T; Fritsch AR; Spielman IB; Kevrekidis PG
    J Phys Condens Matter; 2022 Nov; 51(1):. PubMed ID: 36317280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic crystals for matter waves: Bose-Einstein condensates in optical lattices.
    Ostrovskaya E; Kivshar Y
    Opt Express; 2004 Jan; 12(1):19-29. PubMed ID: 19471508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled formation and reflection of a bright solitary matter-wave.
    Marchant AL; Billam TP; Wiles TP; Yu MM; Gardiner SA; Cornish SL
    Nat Commun; 2013; 4():1865. PubMed ID: 23673650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Light-Atom Solitons and Atomic Transport by Optical Vortex Beams Propagating through a Bose-Einstein Condensate.
    Henderson GW; Robb GRM; Oppo GL; Yao AM
    Phys Rev Lett; 2022 Aug; 129(7):073902. PubMed ID: 36018700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bose-stimulated raman adiabatic passage in photoassociation.
    Mackie M; Kowalski R; Javanainen J
    Phys Rev Lett; 2000 Apr; 84(17):3803-6. PubMed ID: 11019210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation Modes of Bright Matter-Wave Solitons.
    Di Carli A; Colquhoun CD; Henderson G; Flannigan S; Oppo GL; Daley AJ; Kuhr S; Haller E
    Phys Rev Lett; 2019 Sep; 123(12):123602. PubMed ID: 31633971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraprecise Rydberg atomic localization using optical vortices.
    Jia N; Qian J; Kirova T; Juzeliūnas G; Reza Hamedi H
    Opt Express; 2020 Nov; 28(24):36936-36952. PubMed ID: 33379777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of three-dimensional entangled state between a single atom and a Bose-Einstein condensate via adiabatic passage.
    Chen LB; Shi P; Zheng CH; Gu YJ
    Opt Express; 2012 Jun; 20(13):14547-55. PubMed ID: 22714516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-beam double stimulated Raman scatterings: Cascading configuration.
    Rao BJ; Cho M
    J Chem Phys; 2018 Mar; 148(11):114201. PubMed ID: 29566530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonautonomous matter waves in a spin-1 Bose-Einstein condensate.
    Shen YJ; Gao YT; Zuo DW; Sun YH; Feng YJ; Xue L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062915. PubMed ID: 25019859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-component dark-bright solitons in three-dimensional atomic Bose-Einstein condensates.
    Wang W; Kevrekidis PG
    Phys Rev E; 2017 Mar; 95(3-1):032201. PubMed ID: 28415293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Communication: transfer of more than half the population to a selected rovibrational state of H2 by Stark-induced adiabatic Raman passage.
    Mukherjee N; Dong W; Harrison JA; Zare RN
    J Chem Phys; 2013 Feb; 138(5):051101. PubMed ID: 23406090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates: Effects of the Rashba-Dresselhaus coupling and Zeeman splitting.
    Sakaguchi H; Sherman EY; Malomed BA
    Phys Rev E; 2016 Sep; 94(3-1):032202. PubMed ID: 27739749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limitations of STIRAP-like population transfer in extended systems: the three-level system embedded in a web of background states.
    Jakubetz W
    J Chem Phys; 2012 Dec; 137(22):224312. PubMed ID: 23249008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of kink-dark solitons in Bose-Einstein condensates with both two- and three-body interactions.
    Mohamadou A; Wamba E; Lissouck D; Kofane TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046605. PubMed ID: 22680596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.