BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35473251)

  • 21. Pupil tracking with a Hartmann-Shack wavefront sensor.
    Arines J; Prado P; Bará S
    J Biomed Opt; 2010; 15(3):036022. PubMed ID: 20615024
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of anisoplanatism on the measurement accuracy of an extended-source Hartmann-Shack wavefront sensor.
    Wöger F; Rimmele T
    Appl Opt; 2009 Jan; 48(1):A35-46. PubMed ID: 19107153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pupil matching of Zernike aberrations.
    Leroux CE; Tzschachmann A; Dainty JC
    Opt Express; 2010 Oct; 18(21):21567-72. PubMed ID: 20941054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina.
    Choi W; Baumann B; Swanson EA; Fujimoto JG
    Opt Express; 2012 Nov; 20(23):25357-68. PubMed ID: 23187353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects.
    Hazel CA; Cox MJ; Strang NC
    Optom Vis Sci; 2003 Feb; 80(2):151-8. PubMed ID: 12597330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive optics system for a short wavelength mid-IR laser based on a Shack-Hartmann wavefront sensor and analysis of thermal noise impacts.
    Zhou H; Pilar J; Smrz M; Chen L; Čech M; Mocek T
    Appl Opt; 2022 Sep; 61(27):7958-7965. PubMed ID: 36255916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive optics-based wavefront-enhanced laser-induced fluorescence (WELIF) for improved analytical performance.
    Abdel-Harith M; Abdelazeem RM; Hamdy O; Abdel-Salam Z
    Anal Methods; 2023 Jan; 15(2):212-220. PubMed ID: 36524606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wavefront sensor-less adaptive optics using deep reinforcement learning.
    Durech E; Newberry W; Franke J; Sarunic MV
    Biomed Opt Express; 2021 Sep; 12(9):5423-5438. PubMed ID: 34692192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive thresholding and dynamic windowing method for automatic centroid detection of digital Shack-Hartmann wavefront sensor.
    Yin X; Li X; Zhao L; Fang Z
    Appl Opt; 2009 Nov; 48(32):6088-98. PubMed ID: 19904304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. VioBio lab adaptive optics: technology and applications by women vision scientists.
    Marcos S; Benedí-García C; Aissati S; Gonzalez-Ramos AM; Lago CM; Radhkrishnan A; Romero M; Vedhakrishnan S; Sawides L; Vinas M
    Ophthalmic Physiol Opt; 2020 Mar; 40(2):75-87. PubMed ID: 32147855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations.
    Aftab M; Choi H; Liang R; Kim DW
    Opt Express; 2018 Dec; 26(26):34428-34441. PubMed ID: 30650864
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
    Wong KS; Jian Y; Cua M; Bonora S; Zawadzki RJ; Sarunic MV
    Biomed Opt Express; 2015 Feb; 6(2):580-90. PubMed ID: 25780747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy.
    van Werkhoven TI; Antonello J; Truong HH; Verhaegen M; Gerritsen HC; Keller CU
    Opt Express; 2014 Apr; 22(8):9715-33. PubMed ID: 24787857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shack-Hartmann Wavefront Sensing of Ultrashort Optical Vortices.
    Pandey AK; Larrieu T; Dovillaire G; Kazamias S; Guilbaud O
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009674
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging mitochondria through bone in live mice using two-photon fluorescence microscopy with adaptive optics.
    Zheng T; Liversage AR; Tehrani KF; Call JA; Kner PA; Mortensen LJ
    Front Neuroimaging; 2023; 2():959601. PubMed ID: 37554651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multi-layer Shack-Hartmann wavefront sensing in the point source regime.
    Akondi V; Dubra A
    Biomed Opt Express; 2021 Jan; 12(1):409-432. PubMed ID: 33520390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of paraxial forward scattering from intraocular lens with increased surface light scattering using goniophotometry and Hartmann-Shack wavefront aberrometry.
    Minami K; Maruyama Y; Mihashi T; Miyata K; Oshika T
    Jpn J Ophthalmol; 2017 Mar; 61(2):189-194. PubMed ID: 28062928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-speed Shack-Hartmann wavefront sensor design with commercial off-the-shelf optics.
    Widiker JJ; Harris SR; Duncan BD
    Appl Opt; 2006 Jan; 45(2):383-95. PubMed ID: 16422170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.