These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35473270)

  • 1. Investigating spray flames for nanoparticle synthesis via tomographic imaging using multi-simultaneous measurements (TIMes) of emission.
    Foo CT; Unterberger A; Martins FJWA; Prenting MM; Schulz C; Mohri K
    Opt Express; 2022 Apr; 30(9):15524-15545. PubMed ID: 35473270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpraySyn-A standardized burner configuration for nanoparticle synthesis in spray flames.
    Schneider F; Suleiman S; Menser J; Borukhovich E; Wlokas I; Kempf A; Wiggers H; Schulz C
    Rev Sci Instrum; 2019 Aug; 90(8):085108. PubMed ID: 31472649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tomographic imaging using multi-simultaneous measurements (TIMes) for flame emission reconstructions.
    Foo CT; Unterberger A; Menser J; Mohri K
    Opt Express; 2021 Jan; 29(1):244-255. PubMed ID: 33362112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Determination of Droplet and Nanoparticle Size Distributions in Spray Flame Synthesis by Wide-Angle Light Scattering (WALS).
    Aßmann S; Münsterjohann B; Huber FJT; Will S
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using In Situ Measurements to Experimentally Characterize TiO
    Franzelli B; Scouflaire P; Darabiha N
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental Study on the Characteristics of Chemiluminescence in Coal Water Slurry Diffusion Flames Based on Hot Oxygen Burner Technology].
    Hu CH; Guo QH; Song XD; Gong Y; Yu GS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Oct; 36(10):3127-33. PubMed ID: 30222256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of separated flames in analytical flame spectroscopy.
    Kirkbright GF; West TS
    Appl Opt; 1968 Jul; 7(7):1305-11. PubMed ID: 20068791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Laminar Flame Speed of an Ammonia/Methane/Air Premixed Flame under Varying Pressure and Equivalence Ratio.
    Rocha RC; Zhong S; Xu L; Bai XS; Costa M; Cai X; Kim H; Brackmann C; Li Z; Aldén M
    Energy Fuels; 2021 May; 35(9):7179-7192. PubMed ID: 34054210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of FRAME for Simultaneous LIF and LII Imaging in Sooting Flames Using a Single Camera.
    Mishra YN; Boggavarapu P; Chorey D; Zigan L; Will S; Deshmukh D; Rayavarapu R
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-directional 3D flame chemiluminescence tomography based on lens imaging.
    Wang J; Song Y; Li ZH; Kempf A; He AZ
    Opt Lett; 2015 Apr; 40(7):1231-4. PubMed ID: 25831300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instantaneous 3D imaging of highly turbulent flames using computed tomography of chemiluminescence.
    Mohri K; Görs S; Schöler J; Rittler A; Dreier T; Schulz C; Kempf A
    Appl Opt; 2017 Sep; 56(26):7385-7395. PubMed ID: 29048060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CH
    Meng F; Chen Q; Zheng B; Ren X
    ACS Omega; 2024 Apr; 9(13):14997-15014. PubMed ID: 38585075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct comparison of two-dimensional and three-dimensional laser-induced fluorescence measurements on highly turbulent flames.
    Ma L; Lei Q; Capil T; Hammack SD; Carter CD
    Opt Lett; 2017 Jan; 42(2):267-270. PubMed ID: 28081089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames.
    Li Z; Rosell J; Aldén M; Richter M
    Appl Spectrosc; 2017 Jun; 71(6):1363-1367. PubMed ID: 27864444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A setup for studies of laminar flame under microwave irradiation.
    Nilsson EJK; Hurtig T; Ehn A; Fureby C
    Rev Sci Instrum; 2019 Nov; 90(11):113502. PubMed ID: 31779410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission tomography of flame radicals.
    Hertz HM; Faris GW
    Opt Lett; 1988 May; 13(5):351-3. PubMed ID: 19745895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved measurements of a swirl flame at 4  kHz via computed tomography of chemiluminescence.
    Yu T; Ruan C; Liu H; Cai W; Lu X
    Appl Opt; 2018 Jul; 57(21):5962-5969. PubMed ID: 30118020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the mechanism of nanoparticle formation in a flame doped by iron pentacarbonyl.
    Poliak M; Fomin A; Tsionsky V; Cheskis S; Wlokas I; Rahinov I
    Phys Chem Chem Phys; 2015 Jan; 17(1):680-5. PubMed ID: 25407507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel multi-jet burner for hot flue gases of wide range of temperatures and compositions for optical diagnostics of solid fuels gasification/combustion.
    Weng W; Borggren J; Li B; Aldén M; Li Z
    Rev Sci Instrum; 2017 Apr; 88(4):045104. PubMed ID: 28456221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flame synthesis of nanoparticles based on high flux electrostatic atomization burner.
    Chang M; Luo S; Li L; Liu C; Xie Q; Deng W; Park S; Zhou B
    Rev Sci Instrum; 2024 Jul; 95(7):. PubMed ID: 39037300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.