These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35473270)

  • 41. Vortex-induced flame extinction in two-phase counterflow diffusion flames with CH planar laser-induced fluorescence and particle-image velocimetry.
    Lemaire A; Meyer TR; Zähringer K; Rolon JC; Gord JR
    Appl Opt; 2003 Apr; 42(12):2063-71. PubMed ID: 12716146
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatially resolved laser-induced breakdown spectroscopy in methane-air diffusion flames.
    Majd AE; Arabanian AS; Massudi R; Nazeri M
    Appl Spectrosc; 2011 Jan; 65(1):36-42. PubMed ID: 21211152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous planar laser-induced incandescence, OH planar laser-induced fluorescence, and droplet Mie scattering in swirl-stabilized spray flames.
    Meyer TR; Roy S; Belovich VM; Corporan E; Gord JR
    Appl Opt; 2005 Jan; 44(3):445-54. PubMed ID: 15717834
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spiral dynamics of pulsating methane-oxygen flames on a circular burner.
    Robbins K; Gorman M; Bowers J; Brockman R
    Chaos; 2004 Jun; 14(2):467-76. PubMed ID: 15189074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Methyl Radical Imaging in Methane-Air Flames Using Laser Photofragmentation-Induced Fluorescence.
    Li B; Li X; Yao M; Li Z
    Appl Spectrosc; 2015 Oct; 69(10):1152-6. PubMed ID: 26449808
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental data regarding the characterization of the flame behavior near lean blowout in a non-premixed liquid fuel burner.
    De Giorgi MG; Sciolti A; Campilongo S; Ficarella A
    Data Brief; 2016 Mar; 6():189-93. PubMed ID: 26862557
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Atomic emission characteristics of a premixed acetylene-nitrous oxide, total consumption flame.
    Mossotti VG; Duggan M
    Appl Opt; 1968 Jul; 7(7):1325-30. PubMed ID: 20068795
    [TBL] [Abstract][Full Text] [Related]  

  • 48. OH planar laser-induced fluorescence measurements with high spatio-temporal resolution for the study of auto-ignition.
    Arndt CM; Schießl R; Meier W
    Appl Opt; 2019 Apr; 58(10):C14-C22. PubMed ID: 31045026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Temperature field investigation of hydrogen/air and syngas/air axisymmetric laminar flames using Mach-Zehnder interferometry.
    Karaminejad S; Askari MH; Ashjaee M
    Appl Opt; 2018 Jun; 57(18):5057-5067. PubMed ID: 30117966
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-dimensional temperature measurements in a technical combustor with laser Rayleigh scattering.
    Kampmann S; Leipertz A; Döbbeling K; Haumann J; Sattelmayer T
    Appl Opt; 1993 Oct; 32(30):6167-72. PubMed ID: 20856446
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three-dimensional dynamic measurements of CH* and C2* concentrations in flame using simultaneous chemiluminescence tomography.
    Jin Y; Song Y; Qu X; Li Z; Ji Y; He A
    Opt Express; 2017 Mar; 25(5):4640-4654. PubMed ID: 28380735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of "model-friendly" turbulent non-premixed jet burners for C2+ hydrocarbon fuels.
    Zhang J; Shaddix CR; Schefer RW
    Rev Sci Instrum; 2011 Jul; 82(7):074101. PubMed ID: 21806201
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors.
    Rudin T; Wegner K; Pratsinis SE
    J Nanopart Res; 2011 Jul; 13(7):2715-2725. PubMed ID: 23408113
    [TBL] [Abstract][Full Text] [Related]  

  • 54. EXPERIMENTAL AND MODELING STUDY OF PREMIXED LAMINAR FLAMES OF ETHANOL AND METHANE.
    Tran LS; Glaude PA; Fournet R; Battin-Leclerc F
    Energy Fuels; 2013 Apr; 27(4):2226-2245. PubMed ID: 23712124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct measurement of methyl radicals in a methane/air flame at atmospheric pressure by radar REMPI.
    Wu Y; Bottom A; Zhang Z; Ombrello TM; Katta VR
    Opt Express; 2011 Nov; 19(24):23997-4004. PubMed ID: 22109424
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CO Emission from an Impinging Non-Premixed Flame.
    Chien YC; Escofet-Martin D; Dunn-Rankin D
    Combust Flame; 2016 Dec; 174():16-24. PubMed ID: 28989179
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-sensor filter-intensified fiber optic 4D tomographic CH* chemiluminesence flame measurements.
    Rising C; Reyes J; Knaus D; Micka D; Davis B; Belovich V; Ahmed K
    Appl Opt; 2021 Aug; 60(22):6337-6341. PubMed ID: 34612866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Computational Study of Extinguishment and Enhancement of Propane Cup-Burner Flames by Halon and Alternative Agents.
    Takahashi F; Katta V; Linteris G; Babushok V
    Fire Saf J; 2017; 91():. PubMed ID: 30983691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical study of gas-phase interactions of phosphorus compounds with co-flow diffusion flames.
    Takahashi F; Katta VR; Linteris GT; Babushok VI
    Proc Combust Inst; 2019; 37():. PubMed ID: 31579396
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tomographic analysis of CO absorption in a low-pressure flame.
    McNesby KL; Daniel RG; Morris JB; Miziolek AW
    Appl Opt; 1995 Jun; 34(18):3318-24. PubMed ID: 21052138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.