BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 35473814)

  • 1. The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development.
    Doke T; Susztak K
    Trends Cell Biol; 2022 Oct; 32(10):841-853. PubMed ID: 35473814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission.
    Wang J; Zhu P; Li R; Ren J; Zhou H
    Redox Biol; 2020 Feb; 30():101415. PubMed ID: 31901590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Molecular Approach to Mitophagy and Mitochondrial Dynamics.
    Yoo SM; Jung YK
    Mol Cells; 2018 Jan; 41(1):18-26. PubMed ID: 29370689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Good and the Bad of Mitochondrial Breakups.
    Sprenger HG; Langer T
    Trends Cell Biol; 2019 Nov; 29(11):888-900. PubMed ID: 31495461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UCP2-dependent improvement of mitochondrial dynamics protects against acute kidney injury.
    Qin N; Cai T; Ke Q; Yuan Q; Luo J; Mao X; Jiang L; Cao H; Wen P; Zen K; Zhou Y; Yang J
    J Pathol; 2019 Mar; 247(3):392-405. PubMed ID: 30426490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disturbance of mitochondrial dynamics and mitophagy in sepsis-induced acute kidney injury.
    Liu JX; Yang C; Zhang WH; Su HY; Liu ZJ; Pan Q; Liu HF
    Life Sci; 2019 Oct; 235():116828. PubMed ID: 31479679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIX-mediated mitophagy protects against proteinuria-induced tubular cell apoptosis and renal injury.
    Xu D; Chen P; Wang B; Wang Y; Miao N; Yin F; Cheng Q; Zhou Z; Xie H; Zhou L; Liu J; Wang X; Zent R; Lu L; Zhang W
    Am J Physiol Renal Physiol; 2019 Feb; 316(2):F382-F395. PubMed ID: 30207166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of FUNDC1 in mitophagy, mitochondrial dynamics and human diseases.
    Liu H; Zang C; Yuan F; Ju C; Shang M; Ning J; Yang Y; Ma J; Li G; Bao X; Zhang D
    Biochem Pharmacol; 2022 Mar; 197():114891. PubMed ID: 34968482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology.
    Zhan M; Brooks C; Liu F; Sun L; Dong Z
    Kidney Int; 2013 Apr; 83(4):568-81. PubMed ID: 23325082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox homeostasis, oxidative stress and mitophagy.
    Garza-Lombó C; Pappa A; Panayiotidis MI; Franco R
    Mitochondrion; 2020 Mar; 51():105-117. PubMed ID: 31972372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications.
    Rovira-Llopis S; Bañuls C; Diaz-Morales N; Hernandez-Mijares A; Rocha M; Victor VM
    Redox Biol; 2017 Apr; 11():637-645. PubMed ID: 28131082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functions of outer mitochondrial membrane proteins: mediating the crosstalk between mitochondrial dynamics and mitophagy.
    Xian H; Liou YC
    Cell Death Differ; 2021 Mar; 28(3):827-842. PubMed ID: 33208889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria as therapeutic targets in acute kidney injury.
    Hall AM; Schuh CD
    Curr Opin Nephrol Hypertens; 2016 Jul; 25(4):355-62. PubMed ID: 27166518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance.
    Sun D; Wang J; Toan S; Muid D; Li R; Chang X; Zhou H
    Angiogenesis; 2022 Aug; 25(3):307-329. PubMed ID: 35303170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic properties of mitochondria during human corticogenesis.
    Baum T; Gama V
    Development; 2021 Feb; 148(4):. PubMed ID: 33608250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate Sepsis-Induced Acute Kidney Injury by Promoting Mitophagy of Renal Tubular Epithelial Cells
    Guo J; Wang R; Liu D
    Front Endocrinol (Lausanne); 2021; 12():639165. PubMed ID: 34248837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy?
    Higgins GC; Coughlan MT
    Br J Pharmacol; 2014 Apr; 171(8):1917-42. PubMed ID: 24720258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FOXO1 inhibition prevents renal ischemia-reperfusion injury via cAMP-response element binding protein/PPAR-γ coactivator-1α-mediated mitochondrial biogenesis.
    Wang D; Wang Y; Zou X; Shi Y; Liu Q; Huyan T; Su J; Wang Q; Zhang F; Li X; Tie L
    Br J Pharmacol; 2020 Jan; 177(2):432-448. PubMed ID: 31655022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function.
    Zhao C; Chen Z; Qi J; Duan S; Huang Z; Zhang C; Wu L; Zeng M; Zhang B; Wang N; Mao H; Zhang A; Xing C; Yuan Y
    Oncotarget; 2017 Mar; 8(13):20988-21000. PubMed ID: 28423497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unravelling mitochondrial pathways to Parkinson's disease.
    Celardo I; Martins LM; Gandhi S
    Br J Pharmacol; 2014 Apr; 171(8):1943-57. PubMed ID: 24117181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.