These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 35473940)

  • 1. Topology dependence of skyrmion Seebeck and skyrmion Nernst effect.
    Weißenhofer M; Nowak U
    Sci Rep; 2022 Apr; 12(1):6801. PubMed ID: 35473940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skyrmion Dynamics at Finite Temperatures: Beyond Thiele's Equation.
    Weißenhofer M; Rózsa L; Nowak U
    Phys Rev Lett; 2021 Jul; 127(4):047203. PubMed ID: 34355941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ac current generation in chiral magnetic insulators and Skyrmion motion induced by the spin Seebeck effect.
    Lin SZ; Batista CD; Reichhardt C; Saxena A
    Phys Rev Lett; 2014 May; 112(18):187203. PubMed ID: 24856718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of an insulating Skyrmion under a temperature gradient.
    Kong L; Zang J
    Phys Rev Lett; 2013 Aug; 111(6):067203. PubMed ID: 23971607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skyrmion-Anti-Skyrmion Pair Creation by in-Plane Currents.
    Stier M; Häusler W; Posske T; Gurski G; Thorwart M
    Phys Rev Lett; 2017 Jun; 118(26):267203. PubMed ID: 28707922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect.
    Mochizuki M; Yu XZ; Seki S; Kanazawa N; Koshibae W; Zang J; Mostovoy M; Tokura Y; Nagaosa N
    Nat Mater; 2014 Mar; 13(3):241-6. PubMed ID: 24464244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet.
    Hirata Y; Kim DH; Kim SK; Lee DK; Oh SH; Kim DY; Nishimura T; Okuno T; Futakawa Y; Yoshikawa H; Tsukamoto A; Tserkovnyak Y; Shiota Y; Moriyama T; Choe SB; Lee KJ; Ono T
    Nat Nanotechnol; 2019 Mar; 14(3):232-236. PubMed ID: 30664756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deriving the skyrmion Hall angle from skyrmion lattice dynamics.
    Brearton R; Turnbull LA; Verezhak JAT; Balakrishnan G; Hatton PD; van der Laan G; Hesjedal T
    Nat Commun; 2021 May; 12(1):2723. PubMed ID: 33976177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic skyrmion bundles and their current-driven dynamics.
    Tang J; Wu Y; Wang W; Kong L; Lv B; Wei W; Zang J; Tian M; Du H
    Nat Nanotechnol; 2021 Oct; 16(10):1086-1091. PubMed ID: 34341518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices.
    Tan AKC; Ho P; Lourembam J; Huang L; Tan HK; Reichhardt CJO; Reichhardt C; Soumyanarayanan A
    Nat Commun; 2021 Jul; 12(1):4252. PubMed ID: 34253721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric microscopy of magnetic skyrmions.
    Iguchi R; Kasai S; Koshikawa K; Chinone N; Suzuki S; Uchida KI
    Sci Rep; 2019 Dec; 9(1):18443. PubMed ID: 31804550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological magnon band structure of emergent Landau levels in a skyrmion lattice.
    Weber T; Fobes DM; Waizner J; Steffens P; Tucker GS; Böhm M; Beddrich L; Franz C; Gabold H; Bewley R; Voneshen D; Skoulatos M; Georgii R; Ehlers G; Bauer A; Pfleiderer C; Böni P; Janoschek M; Garst M
    Science; 2022 Mar; 375(6584):1025-1030. PubMed ID: 35239388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length Scale of the Spin Seebeck Effect.
    Kehlberger A; Ritzmann U; Hinzke D; Guo EJ; Cramer J; Jakob G; Onbasli MC; Kim DH; Ross CA; Jungfleisch MB; Hillebrands B; Nowak U; Kläui M
    Phys Rev Lett; 2015 Aug; 115(9):096602. PubMed ID: 26371671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skyrmions and Hall transport.
    Kim BS
    J Phys Condens Matter; 2019 Sep; 31(38):383001. PubMed ID: 31167174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edge states and skyrmion dynamics in nanostripes of frustrated magnets.
    Leonov AO; Mostovoy M
    Nat Commun; 2017 Feb; 8():14394. PubMed ID: 28240226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skyrmion-skyrmion interaction induced by itinerant electrons in a ferromagnetic strip.
    Iroulart E; Rosales HD
    J Phys Condens Matter; 2022 Dec; 35(4):. PubMed ID: 36541515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin waves in skyrmionic structures with various topological charges.
    Rózsa L; Weißenhofer M; Nowak U
    J Phys Condens Matter; 2020 Nov; 33(5):. PubMed ID: 33091880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film.
    Quessab Y; Xu JW; Cogulu E; Finizio S; Raabe J; Kent AD
    Nano Lett; 2022 Aug; 22(15):6091-6097. PubMed ID: 35877983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers.
    Zeissler K; Finizio S; Barton C; Huxtable AJ; Massey J; Raabe J; Sadovnikov AV; Nikitov SA; Brearton R; Hesjedal T; van der Laan G; Rosamond MC; Linfield EH; Burnell G; Marrows CH
    Nat Commun; 2020 Jan; 11(1):428. PubMed ID: 31969569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet.
    Peng L; Karube K; Taguchi Y; Nagaosa N; Tokura Y; Yu X
    Nat Commun; 2021 Nov; 12(1):6797. PubMed ID: 34819505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.