BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35474066)

  • 1. Engineering artificial photosynthetic life-forms through endosymbiosis.
    Cournoyer JE; Altman SD; Gao YL; Wallace CL; Zhang D; Lo GH; Haskin NT; Mehta AP
    Nat Commun; 2022 Apr; 13(1):2254. PubMed ID: 35474066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early photosynthetic eukaryotes inhabited low-salinity habitats.
    Sánchez-Baracaldo P; Raven JA; Pisani D; Knoll AH
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7737-E7745. PubMed ID: 28808007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Back to primary endosymbiosis: from plastids to artificial photosynthetic life-forms.
    Flores Tinoco V; Herrera-Estrella L; Lopez-Arredondo D
    Trends Plant Sci; 2023 Jul; 28(7):743-745. PubMed ID: 37085412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomics-Informed Insights into Endosymbiotic Organelle Evolution in Photosynthetic Eukaryotes.
    Nowack ECM; Weber APM
    Annu Rev Plant Biol; 2018 Apr; 69():51-84. PubMed ID: 29489396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.
    Ku C; Nelson-Sathi S; Roettger M; Garg S; Hazkani-Covo E; Martin WF
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10139-46. PubMed ID: 25733873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Did Thylakoids Emerge in Cyanobacteria, and How Were the Primary Chloroplast and Chromatophore Acquired?
    Maréchal E
    Methods Mol Biol; 2024; 2776():3-20. PubMed ID: 38502495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endosymbiosis: double-take on plastid origins.
    Archibald JM
    Curr Biol; 2006 Sep; 16(17):R690-2. PubMed ID: 16950094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution.
    Keeling PJ
    Annu Rev Plant Biol; 2013; 64():583-607. PubMed ID: 23451781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A plastid in the making: evidence for a second primary endosymbiosis.
    Marin B; Nowack EC; Melkonian M
    Protist; 2005 Dec; 156(4):425-32. PubMed ID: 16310747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids.
    Ponce-Toledo RI; Deschamps P; López-García P; Zivanovic Y; Benzerara K; Moreira D
    Curr Biol; 2017 Feb; 27(3):386-391. PubMed ID: 28132810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex origins of chloroplast membranes with photosynthetic machineries: multiple transfers of genes from divergent organisms at different times or a single endosymbiotic event?
    Sato N
    J Plant Res; 2020 Jan; 133(1):15-33. PubMed ID: 31811433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes.
    Calderon RH; Strand Å
    Curr Opin Plant Biol; 2021 Oct; 63():102093. PubMed ID: 34390927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modern descendant of early green algal phagotrophs.
    Maruyama S; Kim E
    Curr Biol; 2013 Jun; 23(12):1081-4. PubMed ID: 23707430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete genome of a nonphotosynthetic cyanobacterium in a diatom reveals recent adaptations to an intracellular lifestyle.
    Nakayama T; Kamikawa R; Tanifuji G; Kashiyama Y; Ohkouchi N; Archibald JM; Inagaki Y
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11407-12. PubMed ID: 25049384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria.
    Wang Z; Zhu XG; Chen Y; Li Y; Hou J; Li Y; Liu L
    BMC Genomics; 2006 Apr; 7():100. PubMed ID: 16646993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taming the perils of photosynthesis by eukaryotes: constraints on endosymbiotic evolution in aquatic ecosystems.
    Miyagishima SY
    Commun Biol; 2023 Nov; 6(1):1150. PubMed ID: 37952050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomes of Stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids.
    Dagan T; Roettger M; Stucken K; Landan G; Koch R; Major P; Gould SB; Goremykin VV; Rippka R; Tandeau de Marsac N; Gugger M; Lockhart PJ; Allen JF; Brune I; Maus I; Pühler A; Martin WF
    Genome Biol Evol; 2013; 5(1):31-44. PubMed ID: 23221676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endosymbiotic associations within protists.
    Nowack EC; Melkonian M
    Philos Trans R Soc Lond B Biol Sci; 2010 Mar; 365(1541):699-712. PubMed ID: 20124339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How did cyanobacteria first embark on the path to becoming plastids?: lessons from protist symbioses.
    Gavelis GS; Gile GH
    FEMS Microbiol Lett; 2018 Oct; 365(19):. PubMed ID: 30165400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis.
    Colleoni C; Linka M; Deschamps P; Handford MG; Dupree P; Weber AP; Ball SG
    Mol Biol Evol; 2010 Dec; 27(12):2691-701. PubMed ID: 20576760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.