BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35474113)

  • 1. Building block 3D printing based on molecular self-assembly monolayer with self-healing properties.
    Hamoudi H; Berdiyorov GR; Zekri A; Tong Y; Mansour S; Esaulov VA; Youcef-Toumi K
    Sci Rep; 2022 Apr; 12(1):6806. PubMed ID: 35474113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-Dimensional Printing of Self-Assembled Dipeptides.
    Yang J; Chen M; Lee H; Xu Z; Zhou Z; Feng SP; Kim JT
    ACS Appl Mater Interfaces; 2021 May; 13(17):20573-20580. PubMed ID: 33896166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing Hierarchically Nano-Ordered Structures.
    Weidinger B; Yang G; von Coelln N; Nirschl H; Wacker I; Tegeder P; Schröder RR; Blasco E
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302756. PubMed ID: 37532671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing.
    Liu Y; Wong CW; Chang SW; Hsu SH
    Acta Biomater; 2021 Mar; 122():211-219. PubMed ID: 33444794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive Molecular Model Assembly with 3D Printing.
    Fazelpour E; Fennell CJ
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of printing-induced interfaces on localized strain within 3D printed hydrogel structures.
    Christensen K; Davis B; Jin Y; Huang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():65-74. PubMed ID: 29752120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating Robust Constructs with Internal Phase Nanostructures via Liquid-in-Liquid 3D Printing.
    Honaryar H; LaNasa JA; Lloyd EC; Hickey RJ; Niroobakhsh Z
    Macromol Rapid Commun; 2021 Nov; 42(22):e2100445. PubMed ID: 34569682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.
    Zhang X; Meng Z; Ma J; Shi Y; Xu H; Lykkemark S; Qin J
    Small; 2015 Aug; 11(30):3666-75. PubMed ID: 25920010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal Materials for 3D Printing.
    Zhu C; Pascall AJ; Dudukovic N; Worsley MA; Kuntz JD; Duoss EB; Spadaccini CM
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():17-42. PubMed ID: 30951639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Digital Light Processing 3D Printing of Healable and Recyclable Polymers with Tailorable Mechanical Properties.
    Zhu G; Hou Y; Xiang J; Xu J; Zhao N
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34954-34961. PubMed ID: 34270889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants.
    Wu L; Virdee J; Maughan E; Darbyshire A; Jell G; Loizidou M; Emberton M; Butler P; Howkins A; Reynolds A; Boyd IW; Birchall M; Song W
    Acta Biomater; 2018 Oct; 80():188-202. PubMed ID: 30223094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographically designed hybrid nanostructures via nanotransfer printing and block copolymer self-assembly.
    Park TW; Jung H; Park J; Ahn YS; Hong SW; Lee J; Lee JH; Park WI
    Nanoscale; 2021 Jul; 13(25):11161-11168. PubMed ID: 34136893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures.
    Jalili AR; Satalov A; Nazari S; Rahmat Suryanto BH; Sun J; Ghasemian MB; Mayyas M; Kandjani AE; Sabri YM; Mayes E; Bhargava SK; Araki J; Zakri C; Poulin P; Esrafilzadeh D; Amal R
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28627-28638. PubMed ID: 34110785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel.
    Choi Y; Kim C; Kim HS; Moon C; Lee KY
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112108. PubMed ID: 34543778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels.
    Kim SW; Kim DY; Roh HH; Kim HS; Lee JW; Lee KY
    Biomacromolecules; 2019 May; 20(5):1860-1866. PubMed ID: 30912929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Antibacterial, Biocompatible, and Biomimetic Hybrid Aerogel-Based Scaffolds with Hierarchical Porosities via Integrating Antibacterial Peptide-Modified Silk Fibroin with Silica Nanostructure.
    Karamat-Ullah N; Demidov Y; Schramm M; Grumme D; Auer J; Bohr C; Brachvogel B; Maleki H
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4545-4556. PubMed ID: 34415718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Design of Functional Organic-Inorganic 3D-Printed (Opto)Electronic Interfaces with Custom Catalytic Activity.
    Muñoz J; Redondo E; Pumera M
    Small; 2021 Oct; 17(41):e2103189. PubMed ID: 34510744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering.
    Liu S; Hu Q; Shen Z; Krishnan S; Zhang H; Ramalingam M
    Biotechnol Bioeng; 2022 Jan; 119(1):118-133. PubMed ID: 34617587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.