These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

696 related articles for article (PubMed ID: 35474355)

  • 21. Identification and Analysis of Potential Key Genes Associated With Hepatocellular Carcinoma Based on Integrated Bioinformatics Methods.
    Li Z; Lin Y; Cheng B; Zhang Q; Cai Y
    Front Genet; 2021; 12():571231. PubMed ID: 33767726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis.
    Deng JL; Xu YH; Wang G
    Front Genet; 2019; 10():695. PubMed ID: 31428132
    [No Abstract]   [Full Text] [Related]  

  • 23. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Screening core genes and cyclin B2 as a potential diagnosis, treatment and prognostic biomarker of hepatocellular carcinoma based on bioinformatics analysis].
    Yang SY; Ren H; Li CF; Tang H
    Zhonghua Gan Zang Bing Za Zhi; 2020 Sep; 28(9):773-783. PubMed ID: 33053978
    [No Abstract]   [Full Text] [Related]  

  • 25. Identification of Hub genes with prognostic values in colorectal cancer by integrated bioinformatics analysis.
    Li S; Li T; Shi YQ; Xu BJ; Deng YY; Sun XG
    Cancer Biomark; 2024; 40(1):27-45. PubMed ID: 38393891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinformatics study on genes related to a high-risk postoperative recurrence of lung adenocarcinoma.
    Lin X; Zhou M; Xu Z; Chen Y; Lin F
    Sci Prog; 2021; 104(3):368504211018053. PubMed ID: 34304612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of key genes as potential biomarkers for triple‑negative breast cancer using integrating genomics analysis.
    Zhong G; Lou W; Shen Q; Yu K; Zheng Y
    Mol Med Rep; 2020 Feb; 21(2):557-566. PubMed ID: 31974598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Seven Cell Cycle-Related Genes with Unfavorable Prognosis and Construction of their TF-miRNA-mRNA regulatory network in Breast Cancer.
    Hong Z; Wang Q; Hong C; Liu M; Qiu P; Lin R; Lin X; Chen F; Li Q; Liu L; Wang C; Chen D
    J Cancer; 2021; 12(3):740-753. PubMed ID: 33403032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SOX9 and IL1A as the Potential Gene Biomarkers of the Oral Cancer.
    Li T; Cheng D; Guo J; Chen H; Zhang S; Bao Y
    Comb Chem High Throughput Screen; 2023; 26(8):1461-1479. PubMed ID: 35762542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of potential key genes for HER-2 positive breast cancer based on bioinformatics analysis.
    Lin Y; Fu F; Lv J; Wang M; Li Y; Zhang J; Wang C
    Medicine (Baltimore); 2020 Jan; 99(1):e18445. PubMed ID: 31895772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.
    Li MX; Jin LT; Wang TJ; Feng YJ; Pan CP; Zhao DM; Shao J
    Onco Targets Ther; 2018; 11():4105-4112. PubMed ID: 30140156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of ribosomal protein family in triple-negative breast cancer by bioinformatics analysis.
    Lin Z; Peng R; Sun Y; Zhang L; Zhang Z
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33305312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of key genes and biological pathways in Chinese lung cancer population using bioinformatics analysis.
    Liu P; Li H; Liao C; Tang Y; Li M; Wang Z; Wu Q; Zhou Y
    PeerJ; 2022; 10():e12731. PubMed ID: 35178291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis.
    Chen B; Sun D; Qin X; Gao XH
    Invest New Drugs; 2021 Aug; 39(4):928-948. PubMed ID: 33501609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinformatic Identification of Hub Genes and Analysis of Prognostic Values in Colorectal Cancer.
    Lei X; Jing J; Zhang M; Guan B; Dong Z; Wang C
    Nutr Cancer; 2021; 73(11-12):2568-2578. PubMed ID: 33153324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of potential oncogenes in triple-negative breast cancer based on bioinformatics analyses.
    Xiao X; Zhang Z; Luo R; Peng R; Sun Y; Wang J; Chen X
    Oncol Lett; 2021 May; 21(5):363. PubMed ID: 33747220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ZGRF1 Is Associated with Poor Prognosis in Triple-Negative Breast Cancer and Promotes Cancer Stemness Based on Bioinformatics.
    Ge W; Jiang M; Zhang F; Ma Y; Wang H; Xu Y
    Onco Targets Ther; 2020; 13():2843-2854. PubMed ID: 32308418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer.
    Peng C; Ma W; Xia W; Zheng W
    Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of bioinformatics analysis to identify possible hub genes and important pathways associated with clear cell renal cell carcinoma.
    Kumar A; Yadav RP; Chatterjee S; Das M; Pal DK
    Urologia; 2024 May; 91(2):261-269. PubMed ID: 38159064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis.
    Dong P; Yu B; Pan L; Tian X; Liu F
    Biomed Res Int; 2018; 2018():2760918. PubMed ID: 30175120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 35.