BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 35474355)

  • 21. Identification and Analysis of Potential Key Genes Associated With Hepatocellular Carcinoma Based on Integrated Bioinformatics Methods.
    Li Z; Lin Y; Cheng B; Zhang Q; Cai Y
    Front Genet; 2021; 12():571231. PubMed ID: 33767726
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Potential Crucial Genes and Key Pathways in Breast Cancer Using Bioinformatic Analysis.
    Deng JL; Xu YH; Wang G
    Front Genet; 2019; 10():695. PubMed ID: 31428132
    [No Abstract]   [Full Text] [Related]  

  • 23. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Screening core genes and cyclin B2 as a potential diagnosis, treatment and prognostic biomarker of hepatocellular carcinoma based on bioinformatics analysis].
    Yang SY; Ren H; Li CF; Tang H
    Zhonghua Gan Zang Bing Za Zhi; 2020 Sep; 28(9):773-783. PubMed ID: 33053978
    [No Abstract]   [Full Text] [Related]  

  • 25. Bioinformatics study on genes related to a high-risk postoperative recurrence of lung adenocarcinoma.
    Lin X; Zhou M; Xu Z; Chen Y; Lin F
    Sci Prog; 2021; 104(3):368504211018053. PubMed ID: 34304612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of key genes as potential biomarkers for triple‑negative breast cancer using integrating genomics analysis.
    Zhong G; Lou W; Shen Q; Yu K; Zheng Y
    Mol Med Rep; 2020 Feb; 21(2):557-566. PubMed ID: 31974598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Seven Cell Cycle-Related Genes with Unfavorable Prognosis and Construction of their TF-miRNA-mRNA regulatory network in Breast Cancer.
    Hong Z; Wang Q; Hong C; Liu M; Qiu P; Lin R; Lin X; Chen F; Li Q; Liu L; Wang C; Chen D
    J Cancer; 2021; 12(3):740-753. PubMed ID: 33403032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. SOX9 and IL1A as the Potential Gene Biomarkers of the Oral Cancer.
    Li T; Cheng D; Guo J; Chen H; Zhang S; Bao Y
    Comb Chem High Throughput Screen; 2023; 26(8):1461-1479. PubMed ID: 35762542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of potential key genes for HER-2 positive breast cancer based on bioinformatics analysis.
    Lin Y; Fu F; Lv J; Wang M; Li Y; Zhang J; Wang C
    Medicine (Baltimore); 2020 Jan; 99(1):e18445. PubMed ID: 31895772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.
    Li MX; Jin LT; Wang TJ; Feng YJ; Pan CP; Zhao DM; Shao J
    Onco Targets Ther; 2018; 11():4105-4112. PubMed ID: 30140156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of ribosomal protein family in triple-negative breast cancer by bioinformatics analysis.
    Lin Z; Peng R; Sun Y; Zhang L; Zhang Z
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33305312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of key genes and biological pathways in Chinese lung cancer population using bioinformatics analysis.
    Liu P; Li H; Liao C; Tang Y; Li M; Wang Z; Wu Q; Zhou Y
    PeerJ; 2022; 10():e12731. PubMed ID: 35178291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Screening and identification of potential biomarkers and therapeutic drugs in melanoma via integrated bioinformatics analysis.
    Chen B; Sun D; Qin X; Gao XH
    Invest New Drugs; 2021 Aug; 39(4):928-948. PubMed ID: 33501609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinformatic Identification of Hub Genes and Analysis of Prognostic Values in Colorectal Cancer.
    Lei X; Jing J; Zhang M; Guan B; Dong Z; Wang C
    Nutr Cancer; 2021; 73(11-12):2568-2578. PubMed ID: 33153324
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of potential oncogenes in triple-negative breast cancer based on bioinformatics analyses.
    Xiao X; Zhang Z; Luo R; Peng R; Sun Y; Wang J; Chen X
    Oncol Lett; 2021 May; 21(5):363. PubMed ID: 33747220
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ZGRF1 Is Associated with Poor Prognosis in Triple-Negative Breast Cancer and Promotes Cancer Stemness Based on Bioinformatics.
    Ge W; Jiang M; Zhang F; Ma Y; Wang H; Xu Y
    Onco Targets Ther; 2020; 13():2843-2854. PubMed ID: 32308418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer.
    Peng C; Ma W; Xia W; Zheng W
    Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of bioinformatics analysis to identify possible hub genes and important pathways associated with clear cell renal cell carcinoma.
    Kumar A; Yadav RP; Chatterjee S; Das M; Pal DK
    Urologia; 2024 May; 91(2):261-269. PubMed ID: 38159064
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis.
    Dong P; Yu B; Pan L; Tian X; Liu F
    Biomed Res Int; 2018; 2018():2760918. PubMed ID: 30175120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The integrative bioinformatic analysis deciphers the predicted molecular target gene and pathway from curcumin derivative CCA-1.1 against triple-negative breast cancer (TNBC).
    Novitasari D; Jenie RI; Kato JY; Meiyanto E
    J Egypt Natl Canc Inst; 2021 Aug; 33(1):19. PubMed ID: 34337682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.