These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35474383)

  • 61. Disk-based k-mer counting on a PC.
    Deorowicz S; Debudaj-Grabysz A; Grabowski S
    BMC Bioinformatics; 2013 May; 14():160. PubMed ID: 23679007
    [TBL] [Abstract][Full Text] [Related]  

  • 62. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter.
    Jackman SD; Vandervalk BP; Mohamadi H; Chu J; Yeo S; Hammond SA; Jahesh G; Khan H; Coombe L; Warren RL; Birol I
    Genome Res; 2017 May; 27(5):768-777. PubMed ID: 28232478
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Using Apache Spark on genome assembly for scalable overlap-graph reduction.
    Paul AJ; Lawrence D; Song M; Lim SH; Pan C; Ahn TH
    Hum Genomics; 2019 Oct; 13(Suppl 1):48. PubMed ID: 31639049
    [TBL] [Abstract][Full Text] [Related]  

  • 64. SSAHA: a fast search method for large DNA databases.
    Ning Z; Cox AJ; Mullikin JC
    Genome Res; 2001 Oct; 11(10):1725-9. PubMed ID: 11591649
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Diminishing return for increased Mappability with longer sequencing reads: implications of the k-mer distributions in the human genome.
    Li W; Freudenberg J; Miramontes P
    BMC Bioinformatics; 2014 Jan; 15():2. PubMed ID: 24386976
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Efficient minimizer orders for large values of
    Pellow D; Pu L; Ekim B; Kotlar L; Berger B; Shamir R; Orenstein Y
    Genome Res; 2023 Jul; 33(7):1154-1161. PubMed ID: 37558282
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fast randomized approximate string matching with succinct hash data structures.
    Policriti A; Prezza N
    BMC Bioinformatics; 2015; 16 Suppl 9(Suppl 9):S4. PubMed ID: 26051265
    [TBL] [Abstract][Full Text] [Related]  

  • 68. GMAP and GSNAP for Genomic Sequence Alignment: Enhancements to Speed, Accuracy, and Functionality.
    Wu TD; Reeder J; Lawrence M; Becker G; Brauer MJ
    Methods Mol Biol; 2016; 1418():283-334. PubMed ID: 27008021
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A sensitive repeat identification framework based on short and long reads.
    Liao X; Li M; Hu K; Wu FX; Gao X; Wang J
    Nucleic Acids Res; 2021 Sep; 49(17):e100. PubMed ID: 34214175
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Improving the performance of minimizers and winnowing schemes.
    Marçais G; Pellow D; Bork D; Orenstein Y; Shamir R; Kingsford C
    Bioinformatics; 2017 Jul; 33(14):i110-i117. PubMed ID: 28881970
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Benchmarking of de novo assembly algorithms for Nanopore data reveals optimal performance of OLC approaches.
    Cherukuri Y; Janga SC
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):507. PubMed ID: 27556636
    [TBL] [Abstract][Full Text] [Related]  

  • 72. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.
    Kim JS; Senol Cali D; Xin H; Lee D; Ghose S; Alser M; Hassan H; Ergin O; Alkan C; Mutlu O
    BMC Genomics; 2018 May; 19(Suppl 2):89. PubMed ID: 29764378
    [TBL] [Abstract][Full Text] [Related]  

  • 73. QUAST: quality assessment tool for genome assemblies.
    Gurevich A; Saveliev V; Vyahhi N; Tesler G
    Bioinformatics; 2013 Apr; 29(8):1072-5. PubMed ID: 23422339
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Bandage: interactive visualization of de novo genome assemblies.
    Wick RR; Schultz MB; Zobel J; Holt KE
    Bioinformatics; 2015 Oct; 31(20):3350-2. PubMed ID: 26099265
    [TBL] [Abstract][Full Text] [Related]  

  • 75. RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads.
    Liao X; Gao X; Zhang X; Wu FX; Wang J
    BMC Bioinformatics; 2020 Oct; 21(1):463. PubMed ID: 33076827
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Improving de novo Assembly Based on Read Classification.
    Liao X; Li M; Luo J; Zou Y; Wu FX; Pan Y; Luo F; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(1):177-188. PubMed ID: 30059317
    [TBL] [Abstract][Full Text] [Related]  

  • 77. JWES: a new pipeline for whole genome/exome sequence data processing, management, and gene-variant discovery, annotation, prediction, and genotyping.
    Ahmed Z; Renart EG; Mishra D; Zeeshan S
    FEBS Open Bio; 2021 Sep; 11(9):2441-2452. PubMed ID: 34370400
    [TBL] [Abstract][Full Text] [Related]  

  • 78. New algorithms for accurate and efficient de novo genome assembly from long DNA sequencing reads.
    Gonzalez-Garcia L; Guevara-Barrientos D; Lozano-Arce D; Gil J; Díaz-Riaño J; Duarte E; Andrade G; Bojacá JC; Hoyos-Sanchez MC; Chavarro C; Guayazan N; Chica LA; Buitrago Acosta MC; Bautista E; Trujillo M; Duitama J
    Life Sci Alliance; 2023 May; 6(5):. PubMed ID: 36813568
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effective sequence similarity detection with strobemers.
    Sahlin K
    Genome Res; 2021 Nov; 31(11):2080-2094. PubMed ID: 34667119
    [No Abstract]   [Full Text] [Related]  

  • 80. Improving Bloom Filter Performance on Sequence Data Using k-mer Bloom Filters.
    Pellow D; Filippova D; Kingsford C
    J Comput Biol; 2017 Jun; 24(6):547-557. PubMed ID: 27828710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.