These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35474477)

  • 1. GraPES: The Granule Protein Enrichment Server for prediction of biological condensate constituents.
    Kuechler ER; Jacobson M; Mayor T; Gsponer J
    Nucleic Acids Res; 2022 Jul; 50(W1):W384-W391. PubMed ID: 35474477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Features of Stress Granule Proteins Predict Localization in Membraneless Organelles.
    Kuechler ER; Budzyńska PM; Bernardini JP; Gsponer J; Mayor T
    J Mol Biol; 2020 Mar; 432(7):2349-2368. PubMed ID: 32105731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-dependent condensate formation regulated by the ubiquitin-related modifier Urm1.
    Cairo LV; Hong X; Müller MBD; Yuste-Checa P; Jagadeesan C; Bracher A; Park SH; Hayer-Hartl M; Hartl FU
    Cell; 2024 Aug; 187(17):4656-4673.e28. PubMed ID: 38942013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are stress granules the RNA analogs of misfolded protein aggregates?
    Ripin N; Parker R
    RNA; 2022 Jan; 28(1):67-75. PubMed ID: 34670846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Hybrid-Body Containing Constituents of Both P-Bodies and Stress Granules Forms in Response to Hypoosmotic Stress in Saccharomyces cerevisiae.
    Shah KH; Varia SN; Cook LA; Herman PK
    PLoS One; 2016; 11(6):e0158776. PubMed ID: 27359124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery.
    Kroschwald S; Munder MC; Maharana S; Franzmann TM; Richter D; Ruer M; Hyman AA; Alberti S
    Cell Rep; 2018 Jun; 23(11):3327-3339. PubMed ID: 29898402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-bodies are RNA-protein condensates driving RNA localization in
    Neil CR; Jeschonek SP; Cabral SE; O'Connell LC; Powrie EA; Otis JP; Wood TR; Mowry KL
    Mol Biol Cell; 2021 Dec; 32(22):ar37. PubMed ID: 34613784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sky1: at the intersection of prion-like proteins and stress granule regulation.
    Shattuck JE; Cascarina SM; Paul KR; Ross ED
    Curr Genet; 2020 Jun; 66(3):463-468. PubMed ID: 31745569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters.
    Trcek T; Douglas TE; Grosch M; Yin Y; Eagle WVI; Gavis ER; Shroff H; Rothenberg E; Lehmann R
    Mol Cell; 2020 Jun; 78(5):941-950.e12. PubMed ID: 32464092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Catalytic Activity of the Ubp3 Deubiquitinating Protease Is Required for Efficient Stress Granule Assembly in Saccharomyces cerevisiae.
    Nostramo R; Varia SN; Zhang B; Emerson MM; Herman PK
    Mol Cell Biol; 2016 Jan; 36(1):173-83. PubMed ID: 26503781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates.
    Yoo H; Bard JAM; Pilipenko EV; Drummond DA
    Mol Cell; 2022 Feb; 82(4):741-755.e11. PubMed ID: 35148816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lsm7 phase-separated condensates trigger stress granule formation.
    Lindström M; Chen L; Jiang S; Zhang D; Gao Y; Zheng J; Hao X; Yang X; Kabbinale A; Thoma J; Metzger LC; Zhang DY; Zhu X; Liu H; Gustafsson CM; Burmann BM; Winderickx J; Sunnerhagen P; Liu B
    Nat Commun; 2022 Jun; 13(1):3701. PubMed ID: 35764627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae.
    Shah KH; Zhang B; Ramachandran V; Herman PK
    Genetics; 2013 Jan; 193(1):109-23. PubMed ID: 23105015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.
    Zhao YG; Zhang H
    Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative photoconversion analysis of internal molecular dynamics in stress granules and other membraneless organelles in live cells.
    Amen T; Kaganovich D
    STAR Protoc; 2020 Dec; 1(3):100217. PubMed ID: 33377110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in
    Hamey JJ; Nguyen A; Wilkins MR
    J Proteome Res; 2021 May; 20(5):2420-2434. PubMed ID: 33856219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The PRALINE database: protein and Rna humAn singLe nucleotIde variaNts in condEnsates.
    Vandelli A; Arnal Segura M; Monti M; Fiorentino J; Broglia L; Colantoni A; Sanchez de Groot N; Torrent Burgas M; Armaos A; Tartaglia GG
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36592044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome.
    Van Treeck B; Protter DSW; Matheny T; Khong A; Link CD; Parker R
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2734-2739. PubMed ID: 29483269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.