BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 35474477)

  • 1. GraPES: The Granule Protein Enrichment Server for prediction of biological condensate constituents.
    Kuechler ER; Jacobson M; Mayor T; Gsponer J
    Nucleic Acids Res; 2022 Jul; 50(W1):W384-W391. PubMed ID: 35474477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Features of Stress Granule Proteins Predict Localization in Membraneless Organelles.
    Kuechler ER; Budzyńska PM; Bernardini JP; Gsponer J; Mayor T
    J Mol Biol; 2020 Mar; 432(7):2349-2368. PubMed ID: 32105731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are stress granules the RNA analogs of misfolded protein aggregates?
    Ripin N; Parker R
    RNA; 2022 Jan; 28(1):67-75. PubMed ID: 34670846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Hybrid-Body Containing Constituents of Both P-Bodies and Stress Granules Forms in Response to Hypoosmotic Stress in Saccharomyces cerevisiae.
    Shah KH; Varia SN; Cook LA; Herman PK
    PLoS One; 2016; 11(6):e0158776. PubMed ID: 27359124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different Material States of Pub1 Condensates Define Distinct Modes of Stress Adaptation and Recovery.
    Kroschwald S; Munder MC; Maharana S; Franzmann TM; Richter D; Ruer M; Hyman AA; Alberti S
    Cell Rep; 2018 Jun; 23(11):3327-3339. PubMed ID: 29898402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-bodies are RNA-protein condensates driving RNA localization in
    Neil CR; Jeschonek SP; Cabral SE; O'Connell LC; Powrie EA; Otis JP; Wood TR; Mowry KL
    Mol Biol Cell; 2021 Dec; 32(22):ar37. PubMed ID: 34613784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sky1: at the intersection of prion-like proteins and stress granule regulation.
    Shattuck JE; Cascarina SM; Paul KR; Ross ED
    Curr Genet; 2020 Jun; 66(3):463-468. PubMed ID: 31745569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters.
    Trcek T; Douglas TE; Grosch M; Yin Y; Eagle WVI; Gavis ER; Shroff H; Rothenberg E; Lehmann R
    Mol Cell; 2020 Jun; 78(5):941-950.e12. PubMed ID: 32464092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Catalytic Activity of the Ubp3 Deubiquitinating Protease Is Required for Efficient Stress Granule Assembly in Saccharomyces cerevisiae.
    Nostramo R; Varia SN; Zhang B; Emerson MM; Herman PK
    Mol Cell Biol; 2016 Jan; 36(1):173-83. PubMed ID: 26503781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates.
    Yoo H; Bard JAM; Pilipenko EV; Drummond DA
    Mol Cell; 2022 Feb; 82(4):741-755.e11. PubMed ID: 35148816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lsm7 phase-separated condensates trigger stress granule formation.
    Lindström M; Chen L; Jiang S; Zhang D; Gao Y; Zheng J; Hao X; Yang X; Kabbinale A; Thoma J; Metzger LC; Zhang DY; Zhu X; Liu H; Gustafsson CM; Burmann BM; Winderickx J; Sunnerhagen P; Liu B
    Nat Commun; 2022 Jun; 13(1):3701. PubMed ID: 35764627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae.
    Shah KH; Zhang B; Ramachandran V; Herman PK
    Genetics; 2013 Jan; 193(1):109-23. PubMed ID: 23105015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.
    Zhao YG; Zhang H
    Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative photoconversion analysis of internal molecular dynamics in stress granules and other membraneless organelles in live cells.
    Amen T; Kaganovich D
    STAR Protoc; 2020 Dec; 1(3):100217. PubMed ID: 33377110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of Arginine Methylation, Phosphorylation, and Their Co-occurrence in Condensate-Associated Proteins in
    Hamey JJ; Nguyen A; Wilkins MR
    J Proteome Res; 2021 May; 20(5):2420-2434. PubMed ID: 33856219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The PRALINE database: protein and Rna humAn singLe nucleotIde variaNts in condEnsates.
    Vandelli A; Arnal Segura M; Monti M; Fiorentino J; Broglia L; Colantoni A; Sanchez de Groot N; Torrent Burgas M; Armaos A; Tartaglia GG
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36592044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome.
    Van Treeck B; Protter DSW; Matheny T; Khong A; Link CD; Parker R
    Proc Natl Acad Sci U S A; 2018 Mar; 115(11):2734-2739. PubMed ID: 29483269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Misfolding-prone proteins are reversibly sequestered to an Hsp42-associated granule upon chronological aging.
    Lee HY; Chao JC; Cheng KY; Leu JY
    J Cell Sci; 2018 Aug; 131(16):. PubMed ID: 30054385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.