These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35474667)

  • 1. A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data.
    Minoura K; Abe K; Nam H; Nishikawa H; Shimamura T
    Cell Rep Methods; 2021 Sep; 1(5):100071. PubMed ID: 35474667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated analysis of multimodal single-cell data with structural similarity.
    Cao Y; Fu L; Wu J; Peng Q; Nie Q; Zhang J; Xie X
    Nucleic Acids Res; 2022 Nov; 50(21):e121. PubMed ID: 36130281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scJVAE: A novel method for integrative analysis of multimodal single-cell data.
    Wani SA; Khan SA; Quadri SMK
    Comput Biol Med; 2023 May; 158():106865. PubMed ID: 37030268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scMaui: a widely applicable deep learning framework for single-cell multiomics integration in the presence of batch effects and missing data.
    Jeong Y; Ronen J; Kopp W; Lutsik P; Akalin A
    BMC Bioinformatics; 2024 Aug; 25(1):257. PubMed ID: 39107690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico exploration.
    Yang X; Mann KK; Wu H; Ding J
    Genome Biol; 2024 Jul; 25(1):198. PubMed ID: 39075536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contrastively generative self-expression model for single-cell and spatial multimodal data.
    Zhang C; Yang Y; Tang S; Aihara K; Zhang C; Chen L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering of single-cell multi-omics data with a multimodal deep learning method.
    Lin X; Tian T; Wei Z; Hakonarson H
    Nat Commun; 2022 Dec; 13(1):7705. PubMed ID: 36513636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixture-of-Experts Variational Autoencoder for clustering and generating from similarity-based representations on single cell data.
    Kopf A; Fortuin V; Somnath VR; Claassen M
    PLoS Comput Biol; 2021 Jun; 17(6):e1009086. PubMed ID: 34191792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint variational autoencoders for multimodal imputation and embedding.
    Kalafut NC; Huang X; Wang D
    Nat Mach Intell; 2023 Jun; 5(6):631-642. PubMed ID: 39175596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. JSNMF enables effective and accurate integrative analysis of single-cell multiomics data.
    Ma Y; Sun Z; Zeng P; Zhang W; Lin Z
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal functional deep learning for multiomics data.
    Zhou Y; Geng P; Zhang S; Xiao F; Cai G; Chen L; ; Lu Q
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39285512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering Analysis via Deep Generative Models With Mixture Models.
    Yang L; Fan W; Bouguila N
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):340-350. PubMed ID: 33048769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data.
    Zuo C; Chen L
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33200787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimodal deep learning approaches for single-cell multi-omics data integration.
    Athaya T; Ripan RC; Li X; Hu H
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergent communication of multimodal deep generative models based on Metropolis-Hastings naming game.
    Hoang NL; Taniguchi T; Hagiwara Y; Taniguchi A
    Front Robot AI; 2023; 10():1290604. PubMed ID: 38356917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT.
    Du JH; Cai Z; Roeder K
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2214414119. PubMed ID: 36459654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.