These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35474793)

  • 21. Preparation and characterization of super hydrophobic aerogels derived from tunicate cellulose nanocrystals.
    Wu S; Ning D; Xu D; Cheng Y; Mondal AK; Zou Q; Zhu H; Huang F
    Carbohydr Res; 2022 Jan; 511():108488. PubMed ID: 34875481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Superhydrophobic Waste Cardboard Aerogels as Effective and Reusable Oil Absorbents.
    Shi G; Wu M; Zhong Q; Mu P; Li J
    Langmuir; 2021 Jun; ():. PubMed ID: 34133186
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels.
    Kuang Y; Chen L; Zhai J; Zhao S; Xiao Q; Wu K; Qiao D; Jiang F
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tailoring the Performance of Graphene Aerogels for Oil/Organic Solvent Separation by 1-Step Solvothermal Approach.
    Pruna A; Cárcel AC; Barjola A; Benedito A; Giménez E
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31357551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flexible, Strong, Multifunctional Graphene Oxide/Silica-Based Composite Aerogels via a Double-Cross-Linked Network Approach.
    Zheng Z; Zhao Y; Hu J; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47854-47864. PubMed ID: 33045826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emulsified blend film based on konjac glucomannan/carrageenan/ camellia oil: Physical, structural, and water barrier properties.
    Zhou X; Zong X; Wang S; Yin C; Gao X; Xiong G; Xu X; Qi J; Mei L
    Carbohydr Polym; 2021 Jan; 251():117100. PubMed ID: 33142638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and Characterization of Graphene Oxide/Chitosan Composite Aerogels with High Mechanical Performance.
    Gong Y; Yu Y; Kang H; Chen X; Liu H; Zhang Y; Sun Y; Song H
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31052440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic Layer Deposition onto Thermoplastic Polymeric Nanofibrous Aerogel Templates for Tailored Surface Properties.
    Lu J; Li Y; Song W; Losego MD; Monikandan R; Jacob KI; Xiao R
    ACS Nano; 2020 Jul; 14(7):7999-8011. PubMed ID: 32644796
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of konjac glucomannan on the physical and chemical stability of walnut oil-in-water emulsions coated by whey proteins.
    Tian L; Zhang S; Yi J; Zhu Z; Decker EA; McClements DJ
    J Sci Food Agric; 2022 Aug; 102(10):4003-4011. PubMed ID: 34997575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical properties of konjac glucomannan/alginate films enriched with sugarcane vinasse intended for mulching applications.
    Santos NL; Ragazzo GO; Cerri BC; Soares MR; Kieckbusch TG; da Silva MA
    Int J Biol Macromol; 2020 Dec; 165(Pt B):1717-1726. PubMed ID: 33069823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile Fabrication of Superhydrophobic Cross-Linked Nanocellulose Aerogels for Oil-Water Separation.
    Shang Q; Chen J; Hu Y; Yang X; Hu L; Liu C; Ren X; Zhou Y
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33669607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption.
    Parmar KR; Dora DTK; Pant KK; Roy S
    J Hazard Mater; 2019 Aug; 375():206-215. PubMed ID: 31071618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions.
    Wu K; Fang Y; Wu H; Wan Y; Qian H; Jiang F; Chen S
    Int J Biol Macromol; 2021 Jan; 166():1499-1507. PubMed ID: 33181223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembly of Ultralight Dual Network Graphene Aerogel with Applications for Selective Oil Absorption.
    Dai C; Sun W; Xu Z; Liu J; Chen J; Zhu Z; Li L; Zeng H
    Langmuir; 2020 Nov; 36(45):13698-13707. PubMed ID: 33143419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and Characterization of
    Zhang R; Wang X; Wang J; Cheng M
    Polymers (Basel); 2018 Dec; 11(1):. PubMed ID: 30959991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carboxymethyl modification of konjac glucomannan affects water binding properties.
    Xiao M; Dai S; Wang L; Ni X; Yan W; Fang Y; Corke H; Jiang F
    Carbohydr Polym; 2015 Oct; 130():1-8. PubMed ID: 26076594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultralight boron nitride aerogels via template-assisted chemical vapor deposition.
    Song Y; Li B; Yang S; Ding G; Zhang C; Xie X
    Sci Rep; 2015 May; 5():10337. PubMed ID: 25976019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A facile approach to ultralight and recyclable 3D self-assembled copolymer/graphene aerogels for efficient oil/water separation.
    Zhang S; Liu G; Gao Y; Yue Q; Gao B; Xu X; Kong W; Li N; Jiang W
    Sci Total Environ; 2019 Dec; 694():133671. PubMed ID: 31401508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and Characterization of Cellulose Grafted with Epoxidized Soybean Oil Aerogels for Oil-Absorbing Materials.
    Xu X; Dong F; Yang X; Liu H; Guo L; Qian Y; Wang A; Wang S; Luo J
    J Agric Food Chem; 2019 Jan; 67(2):637-643. PubMed ID: 30601645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable synthesis of pomelo peel-based aerogel and its application in adsorption of oil/organic pollutants.
    Shi G; Qian Y; Tan F; Cai W; Li Y; Cao Y
    R Soc Open Sci; 2019 Feb; 6(2):181823. PubMed ID: 30891289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.