These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35474833)

  • 1. Study of Two-Dimensional Janus WXY (X≠Y= S, Se, and Te) Trilayer Homostructures for Photovoltaic Applications Using DFT Screening of Different Stacking Patterns.
    Kubra K; Islam MR; Hasan Khan MS; Islam MS; Hasan MT
    ACS Omega; 2022 Apr; 7(15):12947-12955. PubMed ID: 35474833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralow thermal conductivity of W-Janus bilayers (WXY: X, Y = S, Se, and Te) for thermoelectric devices.
    Sharma NK; Mahajan V; Adhikari R; Sharma H
    Nanoscale; 2024 Feb; 16(6):3091-3100. PubMed ID: 38251395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayers of Janus WSSe: monitoring the stacking type via the vibrational spectrum.
    Kandemir A; Sahin H
    Phys Chem Chem Phys; 2018 Jun; 20(25):17380-17386. PubMed ID: 29905346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stacking engineering induced Z-scheme MoSSe/WSSe heterostructure for photocatalytic water splitting.
    Ren L; Liu Z; Ma Z; Ren K; Cui Z; Mu W
    Front Chem; 2024; 12():1425306. PubMed ID: 39006489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-principles investigation of potential water-splitting photocatalysts and photovoltaic materials based on Janus transition-metal dichalcogenide/WSe
    Ayele ST; Obodo KO; Asres GA
    RSC Adv; 2022 Nov; 12(49):31518-31524. PubMed ID: 36380918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rashba spin-splitting in Janus SnXY/WXY (X, Y = S, Se, Te; X ≠ Y) heterostructures.
    Bhat BD
    J Phys Condens Matter; 2023 Jul; 35(43):. PubMed ID: 37467762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Janus transition metal dichalcogenides in combination with MoS
    Beshir BT; Obodo KO; Asres GA
    RSC Adv; 2022 May; 12(22):13749-13755. PubMed ID: 35530386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coexistence of high piezoelectricity and superior optical absorption in Janus Bi
    Cao SH; Zhang T; Geng HY; Chen XR
    Phys Chem Chem Phys; 2024 Jan; 26(5):4629-4642. PubMed ID: 38251770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rolling the WSSe Bilayer into Double-Walled Nanotube for the Enhanced Photocatalytic Water-Splitting Performance.
    Ju L; Qin J; Shi L; Yang G; Zhang J; Sun L
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33799663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Thermoelectric Performance in Two-Dimensional Janus Monolayer Material WS-X (
    Patel A; Singh D; Sonvane Y; Thakor PB; Ahuja R
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46212-46219. PubMed ID: 32931245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers.
    Qin H; Ren K; Zhang G; Dai Y; Zhang G
    Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures.
    Idrees M; Din HU; Ali R; Rehman G; Hussain T; Nguyen CV; Ahmad I; Amin B
    Phys Chem Chem Phys; 2019 Aug; 21(34):18612-18621. PubMed ID: 31414085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting.
    Ju L; Bie M; Tang X; Shang J; Kou L
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29335-29343. PubMed ID: 32519846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometric, electronic, and optical properties of MoS
    Zhang YF; Pan J; Du S
    Nanotechnology; 2021 Jun; 32(35):. PubMed ID: 34038884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of superconductivity by intercalation of alkali metals and alkaline earth metals in Janus transition-metal dichalcogenide heterostructures.
    Er-Rahmany S; Loulidi M; El Kenz A; Benyoussef A; Balli M; Azzouz M
    Phys Chem Chem Phys; 2024 Oct; 26(38):24881-24893. PubMed ID: 39291617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the structural, electronic and dynamical properties of Janus M
    Eren I; Akgenc B
    Phys Chem Chem Phys; 2021 Sep; 23(37):21139-21147. PubMed ID: 34528046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intriguing electronic and optical properties of two-dimensional Janus transition metal dichalcogenides.
    Wang J; Shu H; Zhao T; Liang P; Wang N; Cao D; Chen X
    Phys Chem Chem Phys; 2018 Jul; 20(27):18571-18578. PubMed ID: 29953140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches.
    Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides.
    Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H
    J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The unique photoelectronic properties of the two-dimensional Janus MoSSe/WSSe superlattice: a first-principles study.
    Zhang H; Deng D; Zou DF; Li XB; Tang ZK; Wei XL; Ge QX; Yin WJ
    Dalton Trans; 2022 Nov; 51(42):16102-16110. PubMed ID: 36217903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.