These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35475233)

  • 1. Direct visualization of sulfur cathodes: new insights into Li-S batteries via
    Yu SH; Huang X; Schwarz K; Huang R; Arias TA; Brock JD; Abruña HD
    Energy Environ Sci; 2018 Jan; 8(1):202-210. PubMed ID: 35475233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries.
    Nelson J; Misra S; Yang Y; Jackson A; Liu Y; Wang H; Dai H; Andrews JC; Cui Y; Toney MF
    J Am Chem Soc; 2012 Apr; 134(14):6337-43. PubMed ID: 22432568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing the Electrochemical Charging Mechanism of Nanosized Li
    Zhang L; Sun D; Feng J; Cairns EJ; Guo J
    Nano Lett; 2017 Aug; 17(8):5084-5091. PubMed ID: 28731713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction.
    Tonin G; Vaughan G; Bouchet R; Alloin F; Di Michiel M; Boutafa L; Colin JF; Barchasz C
    Sci Rep; 2017 Jun; 7(1):2755. PubMed ID: 28584237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators.
    Gao X; Zheng X; Tsao Y; Zhang P; Xiao X; Ye Y; Li J; Yang Y; Xu R; Bao Z; Cui Y
    J Am Chem Soc; 2021 Nov; 143(43):18188-18195. PubMed ID: 34677957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple cathode design for Li–S batteries: cell performance and mechanistic insights by in operando X-ray diffraction.
    Kulisch J; Sommer H; Brezesinski T; Janek J
    Phys Chem Chem Phys; 2014 Sep; 16(35):18765-71. PubMed ID: 25077958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the nanoscale structural evolution of solid discharge products in lithium-sulfur batteries using operando scattering.
    Prehal C; von Mentlen JM; Drvarič Talian S; Vizintin A; Dominko R; Amenitsch H; Porcar L; Freunberger SA; Wood V
    Nat Commun; 2022 Oct; 13(1):6326. PubMed ID: 36280671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidimensional operando analysis of macroscopic structure evolution in lithium sulfur cells by X-ray radiography.
    Risse S; Jafta CJ; Yang Y; Kardjilov N; Hilger A; Manke I; Ballauff M
    Phys Chem Chem Phys; 2016 Apr; 18(15):10630-6. PubMed ID: 27035926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries.
    Zu C; Klein M; Manthiram A
    J Phys Chem Lett; 2014 Nov; 5(22):3986-91. PubMed ID: 26276482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Ferroelectric In
    Yuan H; Zhang YW
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16178-16184. PubMed ID: 35369698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte.
    Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulating Key Variables and Visualizing Lithium Dendrite Growth: An Operando X-ray Study.
    Yu SH; Huang X; Brock JD; Abruña HD
    J Am Chem Soc; 2019 May; 141(21):8441-8449. PubMed ID: 31062595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li
    Wang X; Bi X; Wang S; Zhang Y; Du H; Lu J
    ACS Appl Mater Interfaces; 2018 May; 10(19):16552-16560. PubMed ID: 29671567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: a review.
    Tan J; Liu D; Xu X; Mai L
    Nanoscale; 2017 Dec; 9(48):19001-19016. PubMed ID: 29185576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AFM as an analysis tool for high-capacity sulfur cathodes for Li-S batteries.
    Hiesgen R; Sörgel S; Costa R; Carlé L; Galm I; Cañas N; Pascucci B; Friedrich KA
    Beilstein J Nanotechnol; 2013; 4():611-24. PubMed ID: 24205455
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Risse S; Härk E; Kent B; Ballauff M
    ACS Nano; 2019 Sep; 13(9):10233-10241. PubMed ID: 31442025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.
    Patel MU; Arčon I; Aquilanti G; Stievano L; Mali G; Dominko R
    Chemphyschem; 2014 Apr; 15(5):894-904. PubMed ID: 24497200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-Shell-Structured Sulfur Cathode: Ultrathin δ-MnO
    Li Q; Ma Z; Li J; Liu Z; Fan L; Qin X; Shao G
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35049-35057. PubMed ID: 32667773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.