These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35475237)

  • 1. Deep learning neural network tools for proteomics.
    Meyer JG
    Cell Rep Methods; 2021 Jun; 1(2):100003. PubMed ID: 35475237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MUMAL2: Improving sensitivity in shotgun proteomics using cost sensitive artificial neural networks and a threshold selector algorithm.
    Cerqueira FR; Ricardo AM; de Paiva Oliveira A; Graber A; Baumgartner C
    BMC Bioinformatics; 2016 Dec; 17(Suppl 18):472. PubMed ID: 28105913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepIso: A Deep Learning Model for Peptide Feature Detection from LC-MS map.
    Zohora FT; Rahman MZ; Tran NH; Xin L; Shan B; Li M
    Sci Rep; 2019 Nov; 9(1):17168. PubMed ID: 31748623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning the collisional cross sections of the peptide universe from a million experimental values.
    Meier F; Köhler ND; Brunner AD; Wanka JH; Voytik E; Strauss MT; Theis FJ; Mann M
    Nat Commun; 2021 Feb; 12(1):1185. PubMed ID: 33608539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Deep Convolutional Neural Network for Prediction of Peptide Collision Cross Sections in Ion Mobility Spectrometry.
    Samukhina YV; Matyushin DD; Grinevich OI; Buryak AK
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
    Audain E; Uszkoreit J; Sachsenberg T; Pfeuffer J; Liang X; Hermjakob H; Sanchez A; Eisenacher M; Reinert K; Tabb DL; Kohlbacher O; Perez-Riverol Y
    J Proteomics; 2017 Jan; 150():170-182. PubMed ID: 27498275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics.
    Zeng WF; Zhou XX; Willems S; Ammar C; Wahle M; Bludau I; Voytik E; Strauss MT; Mann M
    Nat Commun; 2022 Nov; 13(1):7238. PubMed ID: 36433986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics.
    Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O
    BMC Bioinformatics; 2007 Nov; 8():468. PubMed ID: 18053132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MUMAL: multivariate analysis in shotgun proteomics using machine learning techniques.
    Cerqueira FR; Ferreira RS; Oliveira AP; Gomes AP; Ramos HJ; Graber A; Baumgartner C
    BMC Genomics; 2012; 13 Suppl 5(Suppl 5):S4. PubMed ID: 23095859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current algorithmic solutions for peptide-based proteomics data generation and identification.
    Hoopmann MR; Moritz RL
    Curr Opin Biotechnol; 2013 Feb; 24(1):31-8. PubMed ID: 23142544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics.
    Baczek T; Kaliszan R
    Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved machine learning method for analysis of gas phase chemistry of peptides.
    Gehrke A; Sun S; Kurgan L; Ahn N; Resing K; Kafadar K; Cios K
    BMC Bioinformatics; 2008 Dec; 9():515. PubMed ID: 19055745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Informatics for peptide retention properties in proteomic LC-MS.
    Shinoda K; Sugimoto M; Tomita M; Ishihama Y
    Proteomics; 2008 Feb; 8(4):787-98. PubMed ID: 18214845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-to-sequence translation from mass spectra to peptides with a transformer model.
    Yilmaz M; Fondrie WE; Bittremieux W; Melendez CF; Nelson R; Ananth V; Oh S; Noble WS
    Nat Commun; 2024 Jul; 15(1):6427. PubMed ID: 39080256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Prediction of y Ions in Beam-Type Collision-Induced Dissociation Using Deep Learning.
    Shin H; Park Y; Ahn K; Kim S
    Anal Chem; 2022 Jun; 94(22):7752-7758. PubMed ID: 35609248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results.
    Braisted JC; Kuntumalla S; Vogel C; Marcotte EM; Rodrigues AR; Wang R; Huang ST; Ferlanti ES; Saeed AI; Fleischmann RD; Peterson SN; Pieper R
    BMC Bioinformatics; 2008 Dec; 9():529. PubMed ID: 19068132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational Methods in Mass Spectrometry-Based Proteomics.
    Li S; Tang H
    Adv Exp Med Biol; 2016; 939():63-89. PubMed ID: 27807744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.