BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35475239)

  • 1. A pan-cancer survey of cell line tumor similarity by feature-weighted molecular profiles.
    Sinha R; Luna A; Schultz N; Sander C
    Cell Rep Methods; 2021 Jun; 1(2):100039. PubMed ID: 35475239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Personalized Network Modeling of the Pan-Cancer Patient and Cell Line Interactome.
    Bhattacharyya R; Ha MJ; Liu Q; Akbani R; Liang H; Baladandayuthapani V
    JCO Clin Cancer Inform; 2020 May; 4():399-411. PubMed ID: 32374631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A framework to select clinically relevant cancer cell lines for investigation by establishing their molecular similarity with primary human cancers.
    Dancik GM; Ru Y; Owens CR; Theodorescu D
    Cancer Res; 2011 Dec; 71(24):7398-409. PubMed ID: 22012889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pan-cancer stratification of solid human epithelial tumors and cancer cell lines reveals commonalities and tissue-specific features of the CpG island methylator phenotype.
    Sánchez-Vega F; Gotea V; Margolin G; Elnitski L
    Epigenetics Chromatin; 2015; 8():14. PubMed ID: 25960768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition.
    Mak MP; Tong P; Diao L; Cardnell RJ; Gibbons DL; William WN; Skoulidis F; Parra ER; Rodriguez-Canales J; Wistuba II; Heymach JV; Weinstein JN; Coombes KR; Wang J; Byers LA
    Clin Cancer Res; 2016 Feb; 22(3):609-20. PubMed ID: 26420858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of patient-derived liver cancer cells for phenotypic characterization and therapeutic target identification.
    Castven D; Becker D; Czauderna C; Wilhelm D; Andersen JB; Strand S; Hartmann M; Heilmann-Heimbach S; Roth W; Hartmann N; Straub BK; Mahn FL; Franck S; Pereira S; Haupts A; Vogel A; Wörns MA; Weinmann A; Heinrich S; Lang H; Thorgeirsson SS; Galle PR; Marquardt JU
    Int J Cancer; 2019 Jun; 144(11):2782-2794. PubMed ID: 30485423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of individualized therapeutic vulnerabilities in cancer from genomic profiles.
    Aksoy BA; Demir E; Babur Ö; Wang W; Jing X; Schultz N; Sander C
    Bioinformatics; 2014 Jul; 30(14):2051-9. PubMed ID: 24665131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.
    Yu K; Chen B; Aran D; Charalel J; Yau C; Wolf DM; van 't Veer LJ; Butte AJ; Goldstein T; Sirota M
    Nat Commun; 2019 Aug; 10(1):3574. PubMed ID: 31395879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor characterization and stratification by integrated molecular profiles reveals essential pan-cancer features.
    Liu Z; Zhang S
    BMC Genomics; 2015 Jul; 16(1):503. PubMed ID: 26148869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Pathology of Patient Tumors, Patient-Derived Xenografts, and Cancer Cell Lines.
    Guo S; Qian W; Cai J; Zhang L; Wery JP; Li QX
    Cancer Res; 2016 Aug; 76(16):4619-26. PubMed ID: 27325646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pan-cancer onco-signatures reveal a novel mitochondrial subtype of luminal breast cancer with specific regulators.
    Simeone I; Ceccarelli M
    J Transl Med; 2023 Jan; 21(1):55. PubMed ID: 36717859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring TCGA Pan-Cancer data at the UCSC Cancer Genomics Browser.
    Cline MS; Craft B; Swatloski T; Goldman M; Ma S; Haussler D; Zhu J
    Sci Rep; 2013 Oct; 3():2652. PubMed ID: 24084870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.
    Nickerson ML; Witte N; Im KM; Turan S; Owens C; Misner K; Tsang SX; Cai Z; Wu S; Dean M; Costello JC; Theodorescu D
    Oncogene; 2017 Jan; 36(1):35-46. PubMed ID: 27270441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring primary tumor sites from mutation spectra: a meta-analysis of histology-specific aberrations in cancer-derived cell lines.
    Dietlein F; Eschner W
    Hum Mol Genet; 2014 Mar; 23(6):1527-37. PubMed ID: 24163242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single cell genomics reveals activation signatures of endogenous SCAR's networks in aneuploid human embryos and clinically intractable malignant tumors.
    Glinsky GV
    Cancer Lett; 2016 Oct; 381(1):176-93. PubMed ID: 27497790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PersonaDrive: a method for the identification and prioritization of personalized cancer drivers.
    Erten C; Houdjedj A; Kazan H; Taleb Bahmed AA
    Bioinformatics; 2022 Jun; 38(13):3407-3414. PubMed ID: 35579340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Pan-Cancer Biomarkers Based on the Gene Expression Profiles of Cancer Cell Lines.
    Ding S; Li H; Zhang YH; Zhou X; Feng K; Li Z; Chen L; Huang T; Cai YD
    Front Cell Dev Biol; 2021; 9():781285. PubMed ID: 34917619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outlier analysis of functional genomic profiles enriches for oncology targets and enables precision medicine.
    Zhu Z; Ihle NT; Rejto PA; Zarrinkar PP
    BMC Genomics; 2016 Jun; 17():455. PubMed ID: 27296290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.