These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 35475253)

  • 1. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer.
    Baabu PRS; Srinivasan S; Nagarajan S; Muthamilselvan S; Selvi T; Suresh RR; Palaniappan A
    Synth Syst Biotechnol; 2022 Jun; 7(2):802-814. PubMed ID: 35475253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Synthetic Toehold Switch for MicroRNA Detection in Mammalian Cells.
    Wang S; Emery NJ; Liu AP
    ACS Synth Biol; 2019 May; 8(5):1079-1088. PubMed ID: 31039307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Toehold Switches; a foothold for Synthetic Biology".
    Yarra SS; Ashok G; Mohan U
    Biotechnol Bioeng; 2023 Apr; 120(4):932-952. PubMed ID: 36527224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive web tool for toehold switch design.
    To AC; Chu DH; Wang AR; Li FC; Chiu AW; Gao DY; Choi CHJ; Kong SK; Chan TF; Chan KM; Yip KY
    Bioinformatics; 2018 Aug; 34(16):2862-2864. PubMed ID: 29648573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toehold switches: de-novo-designed regulators of gene expression.
    Green AA; Silver PA; Collins JJ; Yin P
    Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Design of RNA Toehold-Mediated Translation Activators.
    Wu K; Yan Z; Green AA
    Methods Mol Biol; 2022; 2518():33-47. PubMed ID: 35666437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of
    Heo T; Kang H; Choi S; Kim J
    Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional Interference in Toehold Switch-Based RNA Circuits.
    Falgenhauer E; Mückl A; Schwarz-Schilling M; Simmel FC
    ACS Synth Biol; 2022 May; 11(5):1735-1745. PubMed ID: 35412304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular Computational Logic Using Toehold Switches.
    Choi S; Lee G; Kim J
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation.
    Simmel FC
    RNA Biol; 2023 Jan; 20(1):154-163. PubMed ID: 37095744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics.
    Chau THT; Mai DHA; Pham DN; Le HTQ; Lee EY
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32366036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of cell-free platform-based toehold switch system for detection of IP-10 mRNA, an indicator for acute kidney allograft rejection diagnosis.
    Chau THT; Lee EY
    Clin Chim Acta; 2020 Nov; 510():619-624. PubMed ID: 32860784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Riboswitch-inspired toehold riboregulators for gene regulation in Escherichia coli.
    Wang T; Simmel FC
    Nucleic Acids Res; 2022 May; 50(8):4784-4798. PubMed ID: 35446427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.
    Ekdahl AM; Rojano-Nisimura AM; Contreras LM
    J Mol Biol; 2022 Sep; 434(18):167689. PubMed ID: 35717997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short Activators and Repressors of RNA Toehold Switches.
    McSweeney MA; Zhang Y; Styczynski MP
    ACS Synth Biol; 2023 Mar; 12(3):681-688. PubMed ID: 36802167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dual-functional fluorescent biosensor based on enzyme-involved catalytic hairpin assembly for the detection of APE1 and miRNA-21.
    Lu X; Li D; Luo Z; Duan Y
    Analyst; 2022 Jun; 147(12):2834-2842. PubMed ID: 35621039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dandelion-like liposomes-encoded magnetic bead probe-based toehold-mediated DNA circuit for the amplification detection of MiRNA.
    Kong Y; Liu X; Liu C; Xue Q; Li X; Wang H
    Analyst; 2019 Aug; 144(15):4694-4701. PubMed ID: 31268436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective and sensitive detection of miRNA based on toehold-mediated strand displacement reaction and DNA tetrahedron substrate.
    Li W; Jiang W; Ding Y; Wang L
    Biosens Bioelectron; 2015 Sep; 71():401-406. PubMed ID: 25950935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toehold switch based biosensors for sensing the highly trafficked rosewood
    Soudier P; Rodriguez Pinzon D; Reif-Trauttmansdorff T; Hijazi H; Cherrière M; Goncalves Pereira C; Blaise D; Pispisa M; Saint-Julien A; Hamlet W; Nguevo M; Gomes E; Belkhelfa S; Niarakis A; Kushwaha M; Grigoras I
    Synth Syst Biotechnol; 2022 Jun; 7(2):791-801. PubMed ID: 35415278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.