BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35475257)

  • 1. Deep learning-based motion artifact removal in functional near-infrared spectroscopy.
    Gao Y; Chao H; Cavuoto L; Yan P; Kruger U; Norfleet JE; Makled BA; Schwaitzberg S; De S; Intes X
    Neurophotonics; 2022 Oct; 9(4):041406. PubMed ID: 35475257
    [No Abstract]   [Full Text] [Related]  

  • 2. Hybrid motion artifact detection and correction approach for functional near-infrared spectroscopy measurements.
    Gao L; Wei Y; Wang Y; Wang G; Zhang Q; Zhang J; Chen X; Yan X
    J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35212200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet-based motion artifact removal for functional near-infrared spectroscopy.
    Molavi B; Dumont GA
    Physiol Meas; 2012 Feb; 33(2):259-70. PubMed ID: 22273765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data.
    Brigadoi S; Ceccherini L; Cutini S; Scarpa F; Scatturin P; Selb J; Gagnon L; Boas DA; Cooper RJ
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):181-91. PubMed ID: 23639260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network.
    Lee G; Jin SH; An J
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30189651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Motion Artifact Correction Procedure for fNIRS Signals Based on Wavelet Transform and Infrared Thermography Video Tracking.
    Perpetuini D; Cardone D; Filippini C; Chiarelli AM; Merla A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A deep convolutional neural network for estimating hemodynamic response function with reduction of motion artifacts in fNIRS.
    Kim M; Lee S; Dan I; Tak S
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35038682
    [No Abstract]   [Full Text] [Related]  

  • 8. A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy.
    von Lühmann A; Boukouvalas Z; Müller KR; Adalı T
    Neuroimage; 2019 Oct; 200():72-88. PubMed ID: 31203024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling jaw-related motion artifacts in functional near-infrared spectroscopy.
    Zhang F; Reid A; Schroeder A; Ding L; Yuan H
    J Neurosci Methods; 2023 Mar; 388():109810. PubMed ID: 36738847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for removing motion artifacts from fNIRS data using ICA and an acceleration sensor.
    Hiroyasu T; Nakamura Y; Yokouchi H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6800-3. PubMed ID: 24111305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion artifact correction for resting-state neonatal functional near-infrared spectroscopy through adaptive estimation of physiological oscillation denoising.
    Yang M; Xia M; Zhang S; Wu D; Li D; Hou X; Wang D
    Neurophotonics; 2022 Oct; 9(4):045002. PubMed ID: 36284541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wavelet based motion artifact removal for Functional Near Infrared Spectroscopy.
    Molavi B; Dumont GA
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5-8. PubMed ID: 21096093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clenching-Related Motion Artifacts in Functional Near-Infrared Spectroscopy in the Auditory Cortex.
    Zhang F; Reid A; Schroeder A; Cutter M; Kim K; Ding L; Yuan H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4649-4652. PubMed ID: 36086024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodology for validating artifact removal techniques for fNIRS.
    Sweeney KT; Ayaz H; Ward TE; Izzetoglu M; McLoone SF; Onaral B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4943-6. PubMed ID: 22255447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS.
    Fishburn FA; Ludlum RS; Vaidya CJ; Medvedev AV
    Neuroimage; 2019 Jan; 184():171-179. PubMed ID: 30217544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning based motion artifacts processing in fNIRS: a mini review.
    Zhao Y; Luo H; Chen J; Loureiro R; Yang S; Zhao H
    Front Neurosci; 2023; 17():1280590. PubMed ID: 38033535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children.
    Hu XS; Arredondo MM; Gomba M; Confer N; DaSilva AF; Johnson TD; Shalinsky M; Kovelman I
    J Biomed Opt; 2015; 20(12):126003. PubMed ID: 26662300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy.
    Schecklmann M; Mann A; Langguth B; Ehlis AC; Fallgatter AJ; Haeussinger FB
    Front Hum Neurosci; 2017; 11():456. PubMed ID: 28966580
    [No Abstract]   [Full Text] [Related]  

  • 19. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data.
    Chiarelli AM; Maclin EL; Fabiani M; Gratton G
    Neuroimage; 2015 May; 112():128-137. PubMed ID: 25747916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Autoencoder for Real-time Single-channel EEG Cleaning and its Smartphone Implementation using TensorFlow Lite with Hardware/software Acceleration.
    Xing L; Casson AJ
    IEEE Trans Biomed Eng; 2024 Jun; PP():. PubMed ID: 38829759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.