These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35475257)

  • 41. A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity.
    Hossain MB; Posada-Quintero HF; Chon KH
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3601-3611. PubMed ID: 35544485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Domain adaptation for robust workload level alignment between sessions and subjects using fNIRS.
    Lyu B; Pham T; Blaney G; Haga Z; Sassaroli A; Fantini S; Aeron S
    J Biomed Opt; 2021 Jan; 26(2):. PubMed ID: 33415849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding.
    Ortega P; Faisal AA
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34350839
    [No Abstract]   [Full Text] [Related]  

  • 44. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inferring deep-brain activity from cortical activity using functional near-infrared spectroscopy.
    Liu N; Cui X; Bryant DM; Glover GH; Reiss AL
    Biomed Opt Express; 2015 Mar; 6(3):1074-89. PubMed ID: 25798327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unsupervised fNIRS feature extraction with CAE and ESN autoencoder for driver cognitive load classification.
    Liu R; Reimer B; Song S; Mehler B; Solovey E
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33307543
    [No Abstract]   [Full Text] [Related]  

  • 47. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimation of Respiratory Rate during Biking with a Single Sensor Functional Near-Infrared Spectroscopy (fNIRS) System.
    Shahbakhti M; Hakimi N; Horschig JM; Floor-Westerdijk M; Claassen J; Colier WNJM
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050692
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.
    Erdoğan SB; Yücel MA; Akın A
    Neuroimage; 2014 Feb; 87():490-504. PubMed ID: 24148922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Improvement of Motion Artifacts in Brain MRI Using Deep Learning by Simulation Training Data].
    Muro I; Shimizu S; Tsukamoto H
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2022; 78(1):13-22. PubMed ID: 35046218
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparing different pre-processing routines for infant fNIRS data.
    Gemignani J; Gervain J
    Dev Cogn Neurosci; 2021 Apr; 48():100943. PubMed ID: 33735718
    [TBL] [Abstract][Full Text] [Related]  

  • 52. LIONirs: flexible Matlab toolbox for fNIRS data analysis.
    Tremblay J; Martínez-Montes E; Hüsser A; Caron-Desrochers L; Lepage C; Pouliot P; Vannasing P; Gallagher A
    J Neurosci Methods; 2022 Mar; 370():109487. PubMed ID: 35090901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hand Motion Detection in fNIRS Neuroimaging Data.
    Abtahi M; Amiri AM; Byrd D; Mankodiya K
    Healthcare (Basel); 2017 Apr; 5(2):. PubMed ID: 28420129
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion.
    Xu Y; Tong Y; Liu S; Chow HM; AbdulSabur NY; Mattay GS; Braun AR
    Neuroimage; 2014 Dec; 103():33-47. PubMed ID: 25225001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unpaired MR Motion Artifact Deep Learning Using Outlier-Rejecting Bootstrap Aggregation.
    Oh G; Lee JE; Ye JC
    IEEE Trans Med Imaging; 2021 Nov; 40(11):3125-3139. PubMed ID: 34133276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A deep learning method for eliminating head motion artifacts in computed tomography.
    Su B; Wen Y; Liu Y; Liao S; Fu J; Quan G; Li Z
    Med Phys; 2022 Jan; 49(1):411-419. PubMed ID: 34786714
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Application of functional near-infrared spectroscopy in psychiatry.
    Ehlis AC; Schneider S; Dresler T; Fallgatter AJ
    Neuroimage; 2014 Jan; 85 Pt 1():478-88. PubMed ID: 23578578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. NICA: A Novel Toolbox for Near-Infrared Spectroscopy Calculations and Analyses.
    Raggam P; Bauernfeind G; Wriessnegger SC
    Front Neuroinform; 2020; 14():26. PubMed ID: 32523524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A unified canonical correlation analysis-based framework for removing gradient artifact in concurrent EEG/fMRI recording and motion artifact in walking recording from EEG signal.
    Li J; Chen Y; Taya F; Lim J; Wong K; Sun Y; Bezerianos A
    Med Biol Eng Comput; 2017 Sep; 55(9):1669-1681. PubMed ID: 28185050
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy.
    Hervey N; Khan B; Shagman L; Tian F; Delgado MR; Tulchin-Francis K; Shierk A; Roberts H; Smith L; Reid D; Clegg NJ; Liu H; MacFarlane D; Alexandrakis G
    Neurophotonics; 2014 Oct; 1(2):025009. PubMed ID: 26157980
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.