These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 35475257)

  • 81. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice.
    Kohl SH; Mehler DMA; Lührs M; Thibault RT; Konrad K; Sorger B
    Front Neurosci; 2020; 14():594. PubMed ID: 32848528
    [No Abstract]   [Full Text] [Related]  

  • 82. Photoplethysmograph signal reconstruction based on a novel motion artifact detection-reduction approach. Part II: Motion and noise artifact removal.
    Salehizadeh SM; Dao DK; Chong JW; McManus D; Darling C; Mendelson Y; Chon KH
    Ann Biomed Eng; 2014 Nov; 42(11):2251-63. PubMed ID: 24823655
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Combined real-time fMRI and real time fNIRS brain computer interface (BCI): Training of volitional wrist extension after stroke, a case series pilot study.
    Matarasso AK; Rieke JD; White K; Yusufali MM; Daly JJ
    PLoS One; 2021; 16(5):e0250431. PubMed ID: 33956845
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Task-related brain activity and functional connectivity in upper limb dystonia: a functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) study.
    de Faria DD; Paulo AJM; Balardin J; Sato JR; Junior EA; Baltazar CA; Lucca RPD; Borges V; Silva SMCA; Ferraz HB; de Carvalho Aguiar P
    Neurophotonics; 2020 Oct; 7(4):045004. PubMed ID: 33094125
    [No Abstract]   [Full Text] [Related]  

  • 85. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.
    Basso Moro S; Bisconti S; Muthalib M; Spezialetti M; Cutini S; Ferrari M; Placidi G; Quaresima V
    Neuroimage; 2014 Jan; 85 Pt 1():451-60. PubMed ID: 23684867
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Transient increase in systemic interferences in the superficial layer and its influence on event-related motor tasks: a functional near-infrared spectroscopy study.
    Nambu I; Ozawa T; Sato T; Aihara T; Fujiwara Y; Otaka Y; Osu R; Izawa J; Wada Y
    J Biomed Opt; 2017 Mar; 22(3):35008. PubMed ID: 28294282
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks.
    Kwon J; Im CH
    Front Hum Neurosci; 2021; 15():646915. PubMed ID: 33776674
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS.
    Barker JW; Aarabi A; Huppert TJ
    Biomed Opt Express; 2013; 4(8):1366-79. PubMed ID: 24009999
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Characterizing autism spectrum disorder by deep learning spontaneous brain activity from functional near-infrared spectroscopy.
    Xu L; Liu Y; Yu J; Li X; Yu X; Cheng H; Li J
    J Neurosci Methods; 2020 Feb; 331():108538. PubMed ID: 31794776
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Motion artifact removal for functional near infrared spectroscopy: a comparison of methods.
    Robertson FC; Douglas TS; Meintjes EM
    IEEE Trans Biomed Eng; 2010 Jun; 57(6):1377-87. PubMed ID: 20172809
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Denoising and Motion Artifact Removal Using Deformable Kernel Prediction Neural Network for Color-Intensified CMOS.
    Han Z; Li L; Jin W; Wang X; Jiao G; Liu X; Wang H
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200038
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Task-Related Systemic Artifacts in Functional Near-Infrared Spectroscopy
    Cheong D; Zhang F; Kim K; Reid A; Hanan C; Ding L; Yuan H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():948-951. PubMed ID: 33018141
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network.
    Kromrey ML; Tamada D; Johno H; Funayama S; Nagata N; Ichikawa S; Kühn JP; Onishi H; Motosugi U
    Eur Radiol; 2020 Nov; 30(11):5923-5932. PubMed ID: 32556463
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Evaluation of denoising strategies for task-based functional connectivity: Equalizing residual motion artifacts between rest and cognitively demanding tasks.
    Mascali D; Moraschi M; DiNuzzo M; Tommasin S; Fratini M; Gili T; Wise RG; Mangia S; Macaluso E; Giove F
    Hum Brain Mapp; 2021 Apr; 42(6):1805-1828. PubMed ID: 33528884
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Rigid and non-rigid motion artifact reduction in X-ray CT using attention module.
    Ko Y; Moon S; Baek J; Shim H
    Med Image Anal; 2021 Jan; 67():101883. PubMed ID: 33166775
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Global motion detection and censoring in high-density diffuse optical tomography.
    Sherafati A; Snyder AZ; Eggebrecht AT; Bergonzi KM; Burns-Yocum TM; Lugar HM; Ferradal SL; Robichaux-Viehoever A; Smyser CD; Palanca BJ; Hershey T; Culver JP
    Hum Brain Mapp; 2020 Oct; 41(14):4093-4112. PubMed ID: 32648643
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky-Golay filtering.
    Jahani S; Setarehdan SK; Boas DA; Yücel MA
    Neurophotonics; 2018 Jan; 5(1):015003. PubMed ID: 29430471
    [TBL] [Abstract][Full Text] [Related]  

  • 98. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.
    Yücel MA; Selb J; Cooper RJ; Boas DA
    J Innov Opt Health Sci; 2014 Mar; 7(2):. PubMed ID: 25360181
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Accurate hemodynamic response estimation by removal of stimulus-evoked superficial response in fNIRS signals.
    Galli A; Brigadoi S; Giorgi G; Sparacino G; Narduzzi C
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33440365
    [No Abstract]   [Full Text] [Related]  

  • 100. A novel GLM-based method for the Automatic IDentification of functional Events (AIDE) in fNIRS data recorded in naturalistic environments.
    Pinti P; Merla A; Aichelburg C; Lind F; Power S; Swingler E; Hamilton A; Gilbert S; Burgess PW; Tachtsidis I
    Neuroimage; 2017 Jul; 155():291-304. PubMed ID: 28476662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.