These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 35475472)

  • 1. Rupture of Brumadinho dam (Minas Gerais, Brazil): embryotoxicity in zebrafish induced by metal mixture-contaminated water.
    Peixoto PVL; de Andrade ÍBL; Sales BCP; Pereira LC
    J Environ Sci Health B; 2022; 57(6):479-488. PubMed ID: 35475472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prognosis of metal concentrations in sediments and water of Paraopeba River following the collapse of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Pacheco FAL; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; Carvalho de Melo M; Valera CA; Sanches Fernandes LF
    Sci Total Environ; 2022 Feb; 809():151157. PubMed ID: 34687709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A partial least squares-path model of causality among environmental deterioration indicators in the dry period of Paraopeba River after the rupture of B1 tailings dam in Brumadinho (Minas Gerais, Brazil).
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; Sanches Fernandes LF; Pinheiro Fernandes AC; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Environ Pollut; 2022 Aug; 306():119341. PubMed ID: 35469926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River.
    Thompson F; de Oliveira BC; Cordeiro MC; Masi BP; Rangel TP; Paz P; Freitas T; Lopes G; Silva BS; S Cabral A; Soares M; Lacerda D; Dos Santos Vergilio C; Lopes-Ferreira M; Lima C; Thompson C; de Rezende CE
    Sci Total Environ; 2020 Feb; 705():135914. PubMed ID: 31838417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brumadinho dam collapse induces changes in the microbiome and the antibiotic resistance of the Paraopeba River (Minas Gerais, Brazil).
    Thompson C; Garcia G; Masi BP; Freitas T; Paz PHC; Leal CV; Otsuki K; Tschoeke D; Salazar V; Soares M; Lopes G; Bacha L; Cosenza C; Vieira VV; Botelho ACN; de Oliveira BCV; de Rezende CE; Teixeira L; Thompson F
    Sci Total Environ; 2023 Mar; 865():161278. PubMed ID: 36592904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A partial least squares-path model of environmental degradation in the Paraopeba River, for rainy seasons after the rupture of B1 tailings dam, Brumadinho, Brazil.
    Mendes RG; do Valle Junior RF; de Melo Silva MMAP; de Morais Fernandes GH; Fernandes LFS; Fernandes ACP; Pissarra TCT; de Melo MC; Valera CA; Pacheco FAL
    Sci Total Environ; 2022 Dec; 851(Pt 1):158248. PubMed ID: 36028023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectro-temporal analysis of the Paraopeba River water after the tailings dam burst of the Córrego do Feijão mine, in Brumadinho, Brazil.
    Teixeira DBS; Veloso MF; Ferreira FLV; Gleriani JM; do Amaral CH
    Environ Monit Assess; 2021 Jun; 193(7):435. PubMed ID: 34152464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal speciation of the Paraopeba river after the Brumadinho dam failure.
    Teramoto EH; Gemeiner H; Zanatta MBT; Menegário AA; Chang HK
    Sci Total Environ; 2021 Feb; 757():143917. PubMed ID: 33321338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring a new approach for assessing the fate and behavior of the tailings released by the Brumadinho dam collapse (Minas Gerais, Brazil).
    Kobayashi H; Garnier J; Mulholland DS; Quantin C; Haurine F; Tonha M; Joko C; Olivetti D; Freydier R; Seyler P; Martinez JM; Roig HL
    J Hazard Mater; 2023 Apr; 448():130828. PubMed ID: 36731315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal concentrations and biological effects from one of the largest mining disasters in the world (Brumadinho, Minas Gerais, Brazil).
    Vergilio CDS; Lacerda D; Oliveira BCV; Sartori E; Campos GM; Pereira ALS; Aguiar DB; Souza TDS; Almeida MG; Thompson F; Rezende CE
    Sci Rep; 2020 Apr; 10(1):5936. PubMed ID: 32246081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First year after the Brumadinho tailings' dam collapse: Spatial and seasonal variation of trace elements in sediments, fishes and macrophytes from the Paraopeba River, Brazil.
    Parente CET; Lino AS; Carvalho GO; Pizzochero AC; Azevedo-Silva CE; Freitas MO; Teixeira C; Moura RL; Ferreira Filho VJM; Malm O
    Environ Res; 2021 Feb; 193():110526. PubMed ID: 33249035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water security threats and challenges following the rupture of large tailings dams.
    Pacheco FAL; de Oliveira MD; Oliveira MS; Libânio M; do Valle Junior RF; de Melo Silva MMAP; Pissarra TCT; de Melo MC; Valera CA; Fernandes LFS
    Sci Total Environ; 2022 Aug; 834():155285. PubMed ID: 35447180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of remote sensing in environmental impact assessment: a case study of dam rupture in Brumadinho, Minas Gerais, Brazil.
    Souza APD; Teodoro PE; Teodoro LPR; Taveira AC; de Oliveira-Júnior JF; Della-Silva JL; Baio FHR; Lima M; da Silva Junior CA
    Environ Monit Assess; 2021 Aug; 193(9):606. PubMed ID: 34453609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infectious Disease Risks and Vulnerabilities in the Aftermath of an Environmental Disaster in Minas Gerais, Brazil.
    Parekh FK; Yeh KB; Olinger G; Ribeiro FA
    Vector Borne Zoonotic Dis; 2020 May; 20(5):387-389. PubMed ID: 31944914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence and abundance of clinically relevant antimicrobial resistance genes in environmental samples after the Brumadinho dam disaster, Brazil.
    Furlan JPR; Dos Santos LDR; Moretto JAS; Ramos MS; Gallo IFL; Alves GAD; Paulelli AC; Rocha CCS; Cesila CA; Gallimberti M; Devóz PP; Júnior FB; Stehling EG
    Sci Total Environ; 2020 Jul; 726():138100. PubMed ID: 32334350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring river turbidity after a mine tailing dam failure using an empirical model derived from Sentinel-2 imagery.
    Crioni PLB; Teramoto EH; Chang HK
    An Acad Bras Cienc; 2023; 95(1):e20220177. PubMed ID: 37132747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contamination and health risks assessment in a dam in the southeast region of Brazil using ecotoxicological methods.
    de Campos Júnior EO; Araújo DF; Souto HN; Campos CF; Pereira BB
    J Toxicol Environ Health A; 2020 May; 83(10):404-411. PubMed ID: 32456603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the lethal and sublethal effects of 20 environmental chemicals in zebrafish embryos and larvae by using OECD TG 212.
    Horie Y; Yamagishi T; Takahashi H; Shintaku Y; Iguchi T; Tatarazako N
    J Appl Toxicol; 2017 Oct; 37(10):1245-1253. PubMed ID: 28555938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a Brazilian tannery effluent by means of zebra fish (Danio rerio) embryo acute toxicity (FET) test.
    Rocha OP; De Oliveira DP
    J Toxicol Environ Health A; 2017; 80(19-21):1078-1085. PubMed ID: 28862536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of anthropogenic activities and calculation of the relative risk of violating surface water quality standards established by environmental legislation: a case study from the Piracicaba and Paraopeba river basins, Brazil.
    Soares ALC; Pinto CC; Oliveira SC
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):14085-14099. PubMed ID: 32040737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.