These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 35476044)
1. First-principles study of polymer-passivated silicon nanowire outer-shell defects. Wei L; Li F; Pang S; Wang Y; Guo J; Chen J Phys Chem Chem Phys; 2022 May; 24(18):11169-11174. PubMed ID: 35476044 [TBL] [Abstract][Full Text] [Related]
2. Silicon Nanowire Heterojunction Solar Cells with an Al Kato S; Kurokawa Y; Gotoh K; Soga T Nanoscale Res Lett; 2019 Mar; 14(1):99. PubMed ID: 30877482 [TBL] [Abstract][Full Text] [Related]
3. Solution processable Yan J; Ge K; Li H; Yang X; Chen J; Wan L; Guo J; Li F; Xu Y; Song D; Flavel BS; Chen J Nanoscale; 2021 Jul; 13(26):11439-11445. PubMed ID: 34160536 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional etching profiles and surface speciations (via attenuated total reflection-fourier transform infrared spectroscopy) of silicon nanowires in NH4F-buffered HF solutions: a double passivation model. Teo BK; Chen WW; Sun XH; Wang SD; Lee ST J Phys Chem B; 2005 Nov; 109(46):21716-24. PubMed ID: 16853821 [TBL] [Abstract][Full Text] [Related]
5. Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires. Naffeti M; Zaïbi MA; García-Arias AV; Chtourou R; Postigo PA Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364503 [TBL] [Abstract][Full Text] [Related]
6. Carbon monoxide sensing properties of B-, Al- and Ga-doped Si nanowires. de Santiago F; Trejo A; Miranda A; Salazar F; Carvajal E; Pérez LA; Cruz-Irisson M Nanotechnology; 2018 May; 29(20):204001. PubMed ID: 29480169 [TBL] [Abstract][Full Text] [Related]
7. a-Si:H/SiNW shell/core for SiNW solar cell applications. Ashour ES; Sulaiman MY; Ruslan MH; Sopian K Nanoscale Res Lett; 2013 Nov; 8(1):466. PubMed ID: 24195734 [TBL] [Abstract][Full Text] [Related]
8. C@SiNW/TiO2 core-shell nanoarrays with sandwiched carbon passivation layer as high efficiency photoelectrode for water splitting. Devarapalli RR; Debgupta J; Pillai VK; Shelke MV Sci Rep; 2014 May; 4():4897. PubMed ID: 24810865 [TBL] [Abstract][Full Text] [Related]
9. Surface recombination velocity measurements of efficiently passivated gold-catalyzed silicon nanowires by a new optical method. Demichel O; Calvo V; Besson A; Noé P; Salem B; Pauc N; Oehler F; Gentile P; Magnea N Nano Lett; 2010 Jul; 10(7):2323-9. PubMed ID: 20503995 [TBL] [Abstract][Full Text] [Related]
10. Band-gap engineering of halogenated silicon nanowires through molecular doping. de Santiago F; Trejo A; Miranda A; Carvajal E; Pérez LA; Cruz-Irisson M J Mol Model; 2017 Oct; 23(11):314. PubMed ID: 29035419 [TBL] [Abstract][Full Text] [Related]
11. Self-stopping effects of lithium penetration into silicon nanowires. Lang L; Dong C; Chen G; Yang J; Gu X; Xiang H; Wu R; Gong X Nanoscale; 2013 Dec; 5(24):12394-8. PubMed ID: 24162503 [TBL] [Abstract][Full Text] [Related]
12. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation. Li L; Fang Y; Xu C; Zhao Y; Zang N; Jiang P; Ziegler KJ Nanotechnology; 2016 Apr; 27(16):165303. PubMed ID: 26953775 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of chlorine-passivated silicon nanocrystals. Wang R; Pi X; Yang D Phys Chem Chem Phys; 2013 Feb; 15(6):1815-20. PubMed ID: 23287967 [TBL] [Abstract][Full Text] [Related]
14. Influence of Fabrication Processes and Annealing Treatment on the Minority Carrier Lifetime of Silicon Nanowire Films. Kato S; Yamazaki T; Kurokawa Y; Miyajima S; Konagai M Nanoscale Res Lett; 2017 Dec; 12(1):242. PubMed ID: 28363239 [TBL] [Abstract][Full Text] [Related]
15. Understanding quantum confinement in nanowires: basics, applications and possible laws. Mohammad SN J Phys Condens Matter; 2014 Oct; 26(42):423202. PubMed ID: 25245123 [TBL] [Abstract][Full Text] [Related]
16. Highly Efficient Silicon Nanowire Surface Passivation by Bismuth Nano-Coating for Multifunctional Bi@SiNWs Heterostructures. Naffeti M; Postigo PA; Chtourou R; Zaïbi MA Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32717921 [TBL] [Abstract][Full Text] [Related]
17. The effects of oxygen on the surface passivation of InP nanowires. Dionízio Moreira M; Venezuela P; Schmidt TM Nanotechnology; 2008 Feb; 19(6):065203. PubMed ID: 21730696 [TBL] [Abstract][Full Text] [Related]
18. FTIR spectroscopic studies of the stabilities and reactivities of hydrogen-terminated surfaces of silicon nanowires. Sun XH; Wang SD; Wong NB; Ma DD; Lee ST; Teo BK Inorg Chem; 2003 Apr; 42(7):2398-404. PubMed ID: 12665376 [TBL] [Abstract][Full Text] [Related]
19. Modulating the density of silicon nanowire arrays for high-performance hydrovoltaic devices. Zhang B; Zhang B; Sheng G; Gu C; Yu J; Zhang X Nanotechnology; 2024 Feb; 35(18):. PubMed ID: 38271720 [TBL] [Abstract][Full Text] [Related]
20. Vacuum-Free, Room-Temperature Organic Passivation of Silicon: Toward Very Low Recombination of Micro-/Nanotextured Surface Structures. Chen J; Ge K; Zhang C; Guo J; Yang L; Song D; Li F; Xu Z; Xu Y; Mai Y ACS Appl Mater Interfaces; 2018 Dec; 10(51):44890-44896. PubMed ID: 30499658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]