These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35476236)

  • 1. Future Outlook of Transferring Biological Nitrogen Fixation (BNF) to Cereals and Challenges to Retard Achieving this Dream.
    Shamseldin A
    Curr Microbiol; 2022 Apr; 79(6):171. PubMed ID: 35476236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of nitrogen fixation in bacteria that associate with cereals.
    Ryu MH; Zhang J; Toth T; Khokhani D; Geddes BA; Mus F; Garcia-Costas A; Peters JW; Poole PS; Ané JM; Voigt CA
    Nat Microbiol; 2020 Feb; 5(2):314-330. PubMed ID: 31844298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer.
    Curatti L; Rubio LM
    Plant Sci; 2014 Aug; 225():130-7. PubMed ID: 25017168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen Fixation in Cereals.
    Rosenblueth M; Ormeño-Orrillo E; López-López A; Rogel MA; Reyes-Hernández BJ; Martínez-Romero JC; Reddy PM; Martínez-Romero E
    Front Microbiol; 2018; 9():1794. PubMed ID: 30140262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of plant colonizing bacteria as chassis for transfer of N₂-fixation to cereals.
    Geddes BA; Ryu MH; Mus F; Garcia Costas A; Peters JW; Voigt CA; Poole P
    Curr Opin Biotechnol; 2015 Apr; 32():216-222. PubMed ID: 25626166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes.
    Nag P; Shriti S; Das S
    J Appl Microbiol; 2020 Aug; 129(2):186-198. PubMed ID: 31858682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals.
    Rogers C; Oldroyd GE
    J Exp Bot; 2014 May; 65(8):1939-46. PubMed ID: 24687978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of Azotobacter vinelandii strains unable to fix nitrogen with Rhizobium spp. DNA.
    Page WJ
    Can J Microbiol; 1978 Mar; 24(3):209-14. PubMed ID: 647476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives.
    Guo K; Yang J; Yu N; Luo L; Wang E
    Plant Commun; 2023 Mar; 4(2):100499. PubMed ID: 36447432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered plant control of associative nitrogen fixation.
    Haskett TL; Paramasivan P; Mendes MD; Green P; Geddes BA; Knights HE; Jorrin B; Ryu MH; Brett P; Voigt CA; Oldroyd GED; Poole PS
    Proc Natl Acad Sci U S A; 2022 Apr; 119(16):e2117465119. PubMed ID: 35412890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Nitrogen Fixation Activity in an Oxygenic Phototroph.
    Liu D; Liberton M; Yu J; Pakrasi HB; Bhattacharyya-Pakrasi M
    mBio; 2018 Jun; 9(3):. PubMed ID: 29871920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How close are we to nitrogen-fixing cereals?
    Charpentier M; Oldroyd G
    Curr Opin Plant Biol; 2010 Oct; 13(5):556-64. PubMed ID: 20817544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Model of the Nitrogen-Fixing Obligate Aerobe Azotobacter vinelandii Predicts Its Adaptation to Oxygen Concentration and Metal Availability.
    Alleman AB; Mus F; Peters JW
    mBio; 2021 Dec; 12(6):e0259321. PubMed ID: 34903060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.
    Cocking EC; Stone PJ; Davey MR
    Sci China C Life Sci; 2005 Dec; 48 Spec No():888-96. PubMed ID: 16512210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Symbiosome-like intracellular colonization of cereals and other crop plants by nitrogen-fixing bacteria for reduced inputs of synthetic nitrogen fertilizers.
    Cocking EC; Stone PJ; Davey MR
    Sci China C Life Sci; 2005 Sep; 48 Suppl 2():888-96. PubMed ID: 20549443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological solutions to the nitrogen problem.
    Oldroyd GE; Dixon R
    Curr Opin Biotechnol; 2014 Apr; 26():19-24. PubMed ID: 24679253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli.
    Wang L; Zhang L; Liu Z; Zhao D; Liu X; Zhang B; Xie J; Hong Y; Li P; Chen S; Dixon R; Li J
    PLoS Genet; 2013; 9(10):e1003865. PubMed ID: 24146630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ability of free-living nodule bacteria to fix atmospheric nitrogen.
    Demina NS
    Biol Bull Acad Sci USSR; 1978; 5(3):281-8. PubMed ID: 751688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems.
    Ladha JK; Peoples MB; Reddy PM; Biswas JC; Bennett A; Jat ML; Krupnik TJ
    Field Crops Res; 2022 Jul; 283():108541. PubMed ID: 35782167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.
    Xie JB; Du Z; Bai L; Tian C; Zhang Y; Xie JY; Wang T; Liu X; Chen X; Cheng Q; Chen S; Li J
    PLoS Genet; 2014 Mar; 10(3):e1004231. PubMed ID: 24651173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.