These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35476306)
1. Submolecular Ligand Size and Spacing for Cell Adhesion. Kim Y; Koo TM; Thangam R; Kim MS; Jang WY; Kang N; Min S; Kim SY; Yang L; Hong H; Jung HJ; Koh EK; Patel KD; Lee S; Fu HE; Jeon YS; Park BC; Kim SY; Park S; Lee J; Gu L; Kim DH; Kim TH; Lee KB; Jeong WK; Paulmurugan R; Kim YK; Kang H Adv Mater; 2022 Jul; 34(27):e2110340. PubMed ID: 35476306 [TBL] [Abstract][Full Text] [Related]
2. Manipulating Nanoparticle Aggregates Regulates Receptor-Ligand Binding in Macrophages. Kim Y; Jung HJ; Lee Y; Koo S; Thangam R; Jang WY; Kim SY; Park S; Lee S; Bae G; Patel KD; Wei Q; Lee KB; Paulmurugan R; Jeong WK; Hyeon T; Kim D; Kang H J Am Chem Soc; 2022 Apr; 144(13):5769-5783. PubMed ID: 35275625 [TBL] [Abstract][Full Text] [Related]
3. Integrin Subtypes and Nanoscale Ligand Presentation Influence Drug Sensitivity in Cancer Cells. Young JL; Hua X; Somsel H; Reichart F; Kessler H; Spatz JP Nano Lett; 2020 Feb; 20(2):1183-1191. PubMed ID: 31908168 [TBL] [Abstract][Full Text] [Related]
4. Nanoparticle tension probes patterned at the nanoscale: impact of integrin clustering on force transmission. Liu Y; Medda R; Liu Z; Galior K; Yehl K; Spatz JP; Cavalcanti-Adam EA; Salaita K Nano Lett; 2014 Oct; 14(10):5539-46. PubMed ID: 25238229 [TBL] [Abstract][Full Text] [Related]
5. Integrins in cell adhesion and signaling. Akiyama SK Hum Cell; 1996 Sep; 9(3):181-6. PubMed ID: 9183647 [TBL] [Abstract][Full Text] [Related]
6. Cell adhesion and motility depend on nanoscale RGD clustering. Maheshwari G; Brown G; Lauffenburger DA; Wells A; Griffith LG J Cell Sci; 2000 May; 113 ( Pt 10)():1677-86. PubMed ID: 10769199 [TBL] [Abstract][Full Text] [Related]
7. Remote Control of Multimodal Nanoscale Ligand Oscillations Regulates Stem Cell Adhesion and Differentiation. Kang H; Wong DSH; Yan X; Jung HJ; Kim S; Lin S; Wei K; Li G; Dravid VP; Bian L ACS Nano; 2017 Oct; 11(10):9636-9649. PubMed ID: 28841292 [TBL] [Abstract][Full Text] [Related]
8. Substrate Coupling Strength of Integrin-Binding Ligands Modulates Adhesion, Spreading, and Differentiation of Human Mesenchymal Stem Cells. Choi CK; Xu YJ; Wang B; Zhu M; Zhang L; Bian L Nano Lett; 2015 Oct; 15(10):6592-600. PubMed ID: 26390262 [TBL] [Abstract][Full Text] [Related]
9. Magnetic Manipulation of Reversible Nanocaging Controls In Vivo Adhesion and Polarization of Macrophages. Kang H; Jung HJ; Kim SK; Wong DSH; Lin S; Li G; Dravid VP; Bian L ACS Nano; 2018 Jun; 12(6):5978-5994. PubMed ID: 29767957 [TBL] [Abstract][Full Text] [Related]
10. Surface Co-presentation of BMP-2 and integrin selective ligands at the nanoscale favors α Posa F; Baha-Schwab EH; Wei Q; Di Benedetto A; Neubauer S; Reichart F; Kessler H; Spatz JP; Albiges-Rizo C; Mori G; Cavalcanti-Adam EA Biomaterials; 2021 Jan; 267():120484. PubMed ID: 33142116 [TBL] [Abstract][Full Text] [Related]
11. Fine mapping of inhibitory anti-alpha5 monoclonal antibody epitopes that differentially affect integrin-ligand binding. Burrows L; Clark K; Mould AP; Humphries MJ Biochem J; 1999 Dec; 344 Pt 2(Pt 2):527-33. PubMed ID: 10567237 [TBL] [Abstract][Full Text] [Related]
13. Utilizing biomimetic oligopeptides to probe fibronectin-integrin binding and signaling in regulating macrophage function in vitro and in vivo. Kao WJ; Liu Y Front Biosci; 2001 Aug; 6():D992-9. PubMed ID: 11487470 [TBL] [Abstract][Full Text] [Related]
14. Magnetic Control and Real-Time Monitoring of Stem Cell Differentiation by the Ligand Nanoassembly. Lee S; Kim MS; Patel KD; Choi H; Thangam R; Yoon J; Koo TM; Jung HJ; Min S; Bae G; Kim Y; Han SB; Kang N; Kim M; Li N; Fu HE; Jeon YS; Song JJ; Kim DH; Park S; Choi JW; Paulmurugan R; Kang YC; Lee H; Wei Q; Dravid VP; Lee KB; Kim YK; Kang H Small; 2021 Oct; 17(41):e2102892. PubMed ID: 34515417 [TBL] [Abstract][Full Text] [Related]
15. Integrin α3β1 Binding to Fibronectin Is Dependent on the Ninth Type III Repeat. Brown AC; Dysart MM; Clarke KC; Stabenfeldt SE; Barker TH J Biol Chem; 2015 Oct; 290(42):25534-47. PubMed ID: 26318455 [TBL] [Abstract][Full Text] [Related]
16. Activation of the alpha 4 beta 1 integrin through the beta 1 subunit induces recognition of the RGDS sequence in fibronectin. Sánchez-Aparicio P; Dominguez-Jiménez C; Garcia-Pardo A J Cell Biol; 1994 Jul; 126(1):271-9. PubMed ID: 7517944 [TBL] [Abstract][Full Text] [Related]
17. Activation of integrin function by nanopatterned adhesive interfaces. Arnold M; Cavalcanti-Adam EA; Glass R; Blümmel J; Eck W; Kantlehner M; Kessler H; Spatz JP Chemphyschem; 2004 Mar; 5(3):383-8. PubMed ID: 15067875 [TBL] [Abstract][Full Text] [Related]
18. LPAM-1 (integrin alpha 4 beta 7)-ligand binding: overlapping binding sites recognizing VCAM-1, MAdCAM-1 and CS-1 are blocked by fibrinogen, a fibronectin-like polymer and RGD-like cyclic peptides. Yang Y; Cardarelli PM; Lehnert K; Rowland S; Krissansen GW Eur J Immunol; 1998 Mar; 28(3):995-1004. PubMed ID: 9541595 [TBL] [Abstract][Full Text] [Related]
19. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. Massia SP; Hubbell JA J Cell Biol; 1991 Sep; 114(5):1089-100. PubMed ID: 1714913 [TBL] [Abstract][Full Text] [Related]