BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 35476326)

  • 1. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy.
    Kuo YW; Howard J
    Methods Mol Biol; 2022; 2430():73-91. PubMed ID: 35476326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Interference Reflection and Total Internal Reflection Fluorescence Microscopy for Imaging Dynamic Microtubules and Associated Proteins.
    Tuna Y; Al-Hiyasat A; Howard J
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of Interference Reflection Microscopy for Label-free, High-speed Imaging of Microtubules.
    Mahamdeh M; Howard J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy.
    Mahamdeh M; Simmert S; Luchniak A; Schäffer E; Howard J
    J Microsc; 2018 Oct; 272(1):60-66. PubMed ID: 30044498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro.
    Zanic M
    Methods Mol Biol; 2016; 1413():47-61. PubMed ID: 27193842
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Hirst WG; Kiefer C; Abdosamadi MK; Schäffer E; Reber S
    STAR Protoc; 2020 Dec; 1(3):100177. PubMed ID: 33377071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy.
    Spector JO; Vemu A; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():39-51. PubMed ID: 31879897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-based assays for microtubule architecture.
    Bechstedt S; Brouhard GJ
    Methods Cell Biol; 2013; 115():343-54. PubMed ID: 23973082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Platform for Medium-Throughput Cell-Free Analyses of Microtubule-Interacting Proteins Using Mammalian Cell Lysates.
    Jijumon AS; Krishnan A; Janke C
    Curr Protoc; 2024 Jun; 4(6):e1070. PubMed ID: 38865215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
    Gell C; Bormuth V; Brouhard GJ; Cohen DN; Diez S; Friel CT; Helenius J; Nitzsche B; Petzold H; Ribbe J; Schäffer E; Stear JH; Trushko A; Varga V; Widlund PO; Zanic M; Howard J
    Methods Cell Biol; 2010; 95():221-45. PubMed ID: 20466138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
    Al-Bassam J
    Methods Enzymol; 2014; 540():131-48. PubMed ID: 24630105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin.
    Vemu A; Szczesna E; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():27-38. PubMed ID: 31879896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtubule dynamics regulation reconstituted in budding yeast lysates.
    Bergman ZJ; Wong J; Drubin DG; Barnes G
    J Cell Sci; 2018 Sep; 132(4):. PubMed ID: 30185524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
    Stoppin-Mellet V; Bagdadi N; Saoudi Y; Arnal I
    Methods Mol Biol; 2020; 2101():77-91. PubMed ID: 31879899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Going solo: measuring the motions of microtubules with an in vitro assay for TIRF microscopy.
    Leslie K; Galjart N
    Methods Cell Biol; 2013; 115():109-24. PubMed ID: 23973069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous Visualization of the Dynamics of Crosslinked and Single Microtubules In Vitro by TIRF Microscopy.
    Mani N; Marchan MF; Subramanian R
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A TIRF microscopy assay to decode how tau regulates EB's tracking at microtubule ends.
    Ramirez-Rios S; Serre L; Stoppin-Mellet V; Prezel E; Vinit A; Courriol E; Fourest-Lieuvin A; Delaroche J; Denarier E; Arnal I
    Methods Cell Biol; 2017; 141():179-197. PubMed ID: 28882301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues.
    Nakamura M
    New Phytol; 2015 Feb; 205(3):1022-7. PubMed ID: 25729799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of physiological microtubule dynamics using purified components.
    Kinoshita K; Arnal I; Desai A; Drechsel DN; Hyman AA
    Science; 2001 Nov; 294(5545):1340-3. PubMed ID: 11701928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation.
    Vemu A; Szczesna E; Zehr EA; Spector JO; Grigorieff N; Deaconescu AM; Roll-Mecak A
    Science; 2018 Aug; 361(6404):. PubMed ID: 30139843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.