These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35476326)

  • 1. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy.
    Kuo YW; Howard J
    Methods Mol Biol; 2022; 2430():73-91. PubMed ID: 35476326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Interference Reflection and Total Internal Reflection Fluorescence Microscopy for Imaging Dynamic Microtubules and Associated Proteins.
    Tuna Y; Al-Hiyasat A; Howard J
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of Interference Reflection Microscopy for Label-free, High-speed Imaging of Microtubules.
    Mahamdeh M; Howard J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy.
    Mahamdeh M; Simmert S; Luchniak A; Schäffer E; Howard J
    J Microsc; 2018 Oct; 272(1):60-66. PubMed ID: 30044498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring the Effects of Microtubule-Associated Proteins on Microtubule Dynamics In Vitro.
    Zanic M
    Methods Mol Biol; 2016; 1413():47-61. PubMed ID: 27193842
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Hirst WG; Kiefer C; Abdosamadi MK; Schäffer E; Reber S
    STAR Protoc; 2020 Dec; 1(3):100177. PubMed ID: 33377071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy.
    Spector JO; Vemu A; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():39-51. PubMed ID: 31879897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Platform for Medium-Throughput Cell-Free Analyses of Microtubule-Interacting Proteins Using Mammalian Cell Lysates.
    Jijumon AS; Krishnan A; Janke C
    Curr Protoc; 2024 Jun; 4(6):e1070. PubMed ID: 38865215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-based assays for microtubule architecture.
    Bechstedt S; Brouhard GJ
    Methods Cell Biol; 2013; 115():343-54. PubMed ID: 23973082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
    Gell C; Bormuth V; Brouhard GJ; Cohen DN; Diez S; Friel CT; Helenius J; Nitzsche B; Petzold H; Ribbe J; Schäffer E; Stear JH; Trushko A; Varga V; Widlund PO; Zanic M; Howard J
    Methods Cell Biol; 2010; 95():221-45. PubMed ID: 20466138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
    Al-Bassam J
    Methods Enzymol; 2014; 540():131-48. PubMed ID: 24630105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-camera Simultaneous Total Internal Reflection and Interference Reflection Microscopy.
    Spector JO; Chen J; Roll-Mecak A
    bioRxiv; 2024 Aug; ():. PubMed ID: 39372801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin.
    Vemu A; Szczesna E; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():27-38. PubMed ID: 31879896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule dynamics regulation reconstituted in budding yeast lysates.
    Bergman ZJ; Wong J; Drubin DG; Barnes G
    J Cell Sci; 2018 Sep; 132(4):. PubMed ID: 30185524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying Tau-Microtubule Interaction Using Single-Molecule TIRF Microscopy.
    Stoppin-Mellet V; Bagdadi N; Saoudi Y; Arnal I
    Methods Mol Biol; 2020; 2101():77-91. PubMed ID: 31879899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Going solo: measuring the motions of microtubules with an in vitro assay for TIRF microscopy.
    Leslie K; Galjart N
    Methods Cell Biol; 2013; 115():109-24. PubMed ID: 23973069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Visualization of the Dynamics of Crosslinked and Single Microtubules In Vitro by TIRF Microscopy.
    Mani N; Marchan MF; Subramanian R
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35253794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A TIRF microscopy assay to decode how tau regulates EB's tracking at microtubule ends.
    Ramirez-Rios S; Serre L; Stoppin-Mellet V; Prezel E; Vinit A; Courriol E; Fourest-Lieuvin A; Delaroche J; Denarier E; Arnal I
    Methods Cell Biol; 2017; 141():179-197. PubMed ID: 28882301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule nucleating and severing enzymes for modifying microtubule array organization and cell morphogenesis in response to environmental cues.
    Nakamura M
    New Phytol; 2015 Feb; 205(3):1022-7. PubMed ID: 25729799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of physiological microtubule dynamics using purified components.
    Kinoshita K; Arnal I; Desai A; Drechsel DN; Hyman AA
    Science; 2001 Nov; 294(5545):1340-3. PubMed ID: 11701928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.