These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 35476339)
1. Visualization and Quantification of Microtubule Self-Repair. Gaillard J; Blanchoin L; Théry M; Schaedel L Methods Mol Biol; 2022; 2430():279-289. PubMed ID: 35476339 [TBL] [Abstract][Full Text] [Related]
2. Beyond uniformity: Exploring the heterogeneous and dynamic nature of the microtubule lattice. Romeiro Motta M; Biswas S; Schaedel L Eur J Cell Biol; 2023 Dec; 102(4):151370. PubMed ID: 37922811 [TBL] [Abstract][Full Text] [Related]
3. CLASP Mediates Microtubule Repair by Restricting Lattice Damage and Regulating Tubulin Incorporation. Aher A; Rai D; Schaedel L; Gaillard J; John K; Liu Q; Altelaar M; Blanchoin L; Thery M; Akhmanova A Curr Biol; 2020 Jun; 30(11):2175-2183.e6. PubMed ID: 32359430 [TBL] [Abstract][Full Text] [Related]
4. In Vitro Reconstitution Assays of Microtubule Amplification and Lattice Repair by the Microtubule-Severing Enzymes Katanin and Spastin. Vemu A; Szczesna E; Roll-Mecak A Methods Mol Biol; 2020; 2101():27-38. PubMed ID: 31879896 [TBL] [Abstract][Full Text] [Related]
5. More is different: Reconstituting complexity in microtubule regulation. Lawrence EJ; Chatterjee S; Zanic M J Biol Chem; 2023 Dec; 299(12):105398. PubMed ID: 37898404 [TBL] [Abstract][Full Text] [Related]
6. Dynamic instability of microtubules: Monte Carlo simulation and application to different types of microtubule lattice. Martin SR; Schilstra MJ; Bayley PM Biophys J; 1993 Aug; 65(2):578-96. PubMed ID: 8218889 [TBL] [Abstract][Full Text] [Related]
8. A new perspective on microtubule dynamics: destruction by molecular motors and self-repair. Triclin S; Inoue D; Gaillard J; Blanchoin L; Théry M C R Biol; 2021 Nov; 344(3):297-310. PubMed ID: 35786632 [TBL] [Abstract][Full Text] [Related]
12. Microtubule dynamic instability does not result from stabilization of microtubules by tubulin-GDP-Pi subunits. Caplow M; Shanks J Biochemistry; 1998 Sep; 37(37):12994-3002. PubMed ID: 9737880 [TBL] [Abstract][Full Text] [Related]
13. EB1 recognizes the nucleotide state of tubulin in the microtubule lattice. Zanic M; Stear JH; Hyman AA; Howard J PLoS One; 2009 Oct; 4(10):e7585. PubMed ID: 19851462 [TBL] [Abstract][Full Text] [Related]
14. Two-color Andreu-Carbó M; Fernandes S; Aumeier C STAR Protoc; 2022 Jun; 3(2):101320. PubMed ID: 35496777 [TBL] [Abstract][Full Text] [Related]
15. Regulation of microtubule dynamic instability by tubulin-GDP. Vandecandelaere A; Martin SR; Bayley PM Biochemistry; 1995 Jan; 34(4):1332-43. PubMed ID: 7827081 [TBL] [Abstract][Full Text] [Related]
16. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. Geyer EA; Burns A; Lalonde BA; Ye X; Piedra FA; Huffaker TC; Rice LM Elife; 2015 Oct; 4():e10113. PubMed ID: 26439009 [TBL] [Abstract][Full Text] [Related]
17. Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations. Jordan MA; Wilson L Biochemistry; 1990 Mar; 29(11):2730-9. PubMed ID: 2346745 [TBL] [Abstract][Full Text] [Related]
18. A simple formulation of microtubule dynamics: quantitative implications of the dynamic instability of microtubule populations in vivo and in vitro. Bayley PM; Schilstra MJ; Martin SR J Cell Sci; 1989 Jun; 93 ( Pt 2)():241-54. PubMed ID: 2613763 [TBL] [Abstract][Full Text] [Related]
19. Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Blake-Hodek KA; Cassimeris L; Huffaker TC Mol Biol Cell; 2010 Jun; 21(12):2013-23. PubMed ID: 20392838 [TBL] [Abstract][Full Text] [Related]
20. Microtubule plus-end tracking by CLIP-170 requires EB1. Dixit R; Barnett B; Lazarus JE; Tokito M; Goldman YE; Holzbaur EL Proc Natl Acad Sci U S A; 2009 Jan; 106(2):492-7. PubMed ID: 19126680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]