These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35476341)

  • 1. Mechanical Deformation of Microtubules on a Two-Dimensional Elastic Medium.
    Nasrin SR; Afroze F; Kabir AMR; Kakugo A
    Methods Mol Biol; 2022; 2430():303-314. PubMed ID: 35476341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking of buckled microtubules is mediated by kinesins.
    Kabir AMR; Sada K; Kakugo A
    Biochem Biophys Res Commun; 2020 Mar; 524(1):249-254. PubMed ID: 31983434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Buckling of microtubules on elastic media via breakable bonds.
    Afrin T; Kabir AM; Sada K; Kakugo A; Nitta T
    Biochem Biophys Res Commun; 2016 Nov; 480(1):132-138. PubMed ID: 27693793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation of microtubules regulates translocation dynamics of kinesin.
    Nasrin SR; Ganser C; Nishikawa S; Kabir AMR; Sada K; Yamashita T; Ikeguchi M; Uchihashi T; Hess H; Kakugo A
    Sci Adv; 2021 Oct; 7(42):eabf2211. PubMed ID: 34644102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cargo Transport by Microtubule-Associated Motor Protein Along Mechanically Deformed Microtubules.
    Nasrin SR; Kabir AMR; Kakugo A
    Methods Mol Biol; 2022; 2430():291-302. PubMed ID: 35476340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Buckling of Microtubules on a 2D Elastic Medium.
    Kabir AM; Inoue D; Afrin T; Mayama H; Sada K; Kakugo A
    Sci Rep; 2015 Nov; 5():17222. PubMed ID: 26596905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanics model of microtubule buckling in living cells.
    Li T
    J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An estimate to the first approximation of microtubule rupture force.
    Endow SA; Marszalek PE
    Eur Biophys J; 2019 Sep; 48(6):569-577. PubMed ID: 31134309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro and in vivo analysis of microtubule-destabilizing kinesins.
    Stumpff J; Cooper J; Domnitz S; Moore AT; Rankin KE; Wagenbach M; Wordeman L
    Methods Mol Biol; 2007; 392():37-49. PubMed ID: 17951709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecular motor modulates mechanical property of microtubule.
    Kabir AM; Inoue D; Hamano Y; Mayama H; Sada K; Kakugo A
    Biomacromolecules; 2014 May; 15(5):1797-805. PubMed ID: 24697688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single depolymerizing and transport kinesins stabilize microtubule ends.
    Ciorîță A; Bugiel M; Sudhakar S; Schäffer E; Jannasch A
    Cytoskeleton (Hoboken); 2021 May; 78(5):177-184. PubMed ID: 34310069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A viscoelastic model for axonal microtubule rupture.
    Shamloo A; Manuchehrfar F; Rafii-Tabar H
    J Biomech; 2015 May; 48(7):1241-7. PubMed ID: 25835789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parts list for a microtubule depolymerising kinesin.
    Friel CT; Welburn JP
    Biochem Soc Trans; 2018 Dec; 46(6):1665-1672. PubMed ID: 30467119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kin I kinesins: insights into the mechanism of depolymerization.
    Hertzer KM; Ems-McClung SC; Walczak CE
    Crit Rev Biochem Mol Biol; 2003; 38(6):453-69. PubMed ID: 14695126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two modes of PRC1-mediated mechanical resistance to kinesin-driven microtubule network disruption.
    Alfieri A; Gaska I; Forth S
    Curr Biol; 2021 Jun; 31(12):2495-2506.e4. PubMed ID: 33848456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The rate of microtubule breaking increases exponentially with curvature.
    Tsitkov S; Rodriguez JB; Bassir Kazeruni NM; Sweet M; Nitta T; Hess H
    Sci Rep; 2022 Dec; 12(1):20899. PubMed ID: 36463258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why are ATP-driven microtubule minus-end directed motors critical to plants? An overview of plant multifunctional kinesins.
    Ali I; Yang WC
    Funct Plant Biol; 2020 May; 47(6):524-536. PubMed ID: 32336322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.
    Atherton J; Farabella I; Yu IM; Rosenfeld SS; Houdusse A; Topf M; Moores CA
    Elife; 2014 Sep; 3():e03680. PubMed ID: 25209998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of KinI kinesin ATPase activity by binding to the microtubule lattice.
    Moores CA; Hekmat-Nejad M; Sakowicz R; Milligan RA
    J Cell Biol; 2003 Dec; 163(5):963-71. PubMed ID: 14662742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Pattern Formation of Active Matters Triggered by Mechanical Stimuli.
    Keya JJ; Kabir AMR; Akter M; Kakugo A
    Methods Mol Biol; 2022; 2430():193-203. PubMed ID: 35476333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.