These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 35476341)

  • 21. Dynamic Pattern Formation of Active Matters Triggered by Mechanical Stimuli.
    Keya JJ; Kabir AMR; Akter M; Kakugo A
    Methods Mol Biol; 2022; 2430():193-203. PubMed ID: 35476333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Back on track - on the role of the microtubule for kinesin motility and cellular function.
    Lakämper S; Meyhöfer E
    J Muscle Res Cell Motil; 2006; 27(2):161-71. PubMed ID: 16453157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Variational principles for buckling of microtubules modeled as nonlocal orthotropic shells.
    Adali S
    Comput Math Methods Med; 2014; 2014():591532. PubMed ID: 25214886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mode of ATP-dependent microtubule-kinesin sliding in the auxotonic condition.
    Shirakawa I; Oiwa K; Chaen S; Shimizu T; Tanaka H; Sugi H
    J Exp Biol; 1995 Aug; 198(Pt 8):1809-15. PubMed ID: 7636448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the significance of microtubule flexural behavior in cytoskeletal mechanics.
    Mehrbod M; Mofrad MR
    PLoS One; 2011; 6(10):e25627. PubMed ID: 21998675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assembling Molecular Shuttles Powered by Reversibly Attached Kinesins.
    Bassir Kazeruni NM; Tsitkov S; Hess H
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30741264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.
    Beni YT; Zeverdejani MK; Mehralian F
    Math Biosci; 2017 Oct; 292():18-29. PubMed ID: 28709975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple kinesins induce tension for smooth cargo transport.
    Tjioe M; Shukla S; Vaidya R; Troitskaia A; Bookwalter CS; Trybus KM; Chemla YR; Selvin PR
    Elife; 2019 Oct; 8():. PubMed ID: 31670658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of microtubule dynamics by kinesins.
    Drummond DR
    Semin Cell Dev Biol; 2011 Dec; 22(9):927-34. PubMed ID: 22001250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mapping the Processivity Determinants of the Kinesin-3 Motor Domain.
    Scarabelli G; Soppina V; Yao XQ; Atherton J; Moores CA; Verhey KJ; Grant BJ
    Biophys J; 2015 Oct; 109(8):1537-40. PubMed ID: 26488644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rearrangement of microtubule network under biochemical and mechanical stimulations.
    Celik E; Abdulreda MH; Maiguel D; Li J; Moy VT
    Methods; 2013 Apr; 60(2):195-201. PubMed ID: 23466787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct roles of doublecortin modulating the microtubule cytoskeleton.
    Moores CA; Perderiset M; Kappeler C; Kain S; Drummond D; Perkins SJ; Chelly J; Cross R; Houdusse A; Francis F
    EMBO J; 2006 Oct; 25(19):4448-57. PubMed ID: 16957770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localized buckling of a microtubule surrounded by randomly distributed cross linkers.
    Jin MZ; Ru CQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012701. PubMed ID: 23944486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of stopped-flow fluorescence and labeled nucleotides to analyze the ATP turnover cycle of kinesins.
    Patel JT; Belsham HR; Rathbone AJ; Friel CT
    J Vis Exp; 2014 Oct; (92):e52142. PubMed ID: 25350116
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of key residues that regulate the interaction of kinesins with microtubule ends.
    Belsham HR; Friel CT
    Cytoskeleton (Hoboken); 2019 Jul; 76(7-8):440-446. PubMed ID: 31574569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microtubules soften due to cross-sectional flattening.
    Memet E; Hilitski F; Morris MA; Schwenger WJ; Dogic Z; Mahadevan L
    Elife; 2018 Jun; 7():. PubMed ID: 29856317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature dependence of the flexural rigidity of single microtubules.
    Kawaguchi K; Ishiwata S; Yamashita T
    Biochem Biophys Res Commun; 2008 Feb; 366(3):637-42. PubMed ID: 18068120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing the Number of Kinesin Motors Bound to Microtubules in the Gliding Motility Assay Using FLIC Microscopy.
    VanDelinder V; Bachand GD
    Methods Mol Biol; 2022; 2430():93-104. PubMed ID: 35476327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global and local control of microtubule destabilization promoted by a catastrophe kinesin MCAK/XKCM1.
    Kinoshita K; Noetzel TL; Arnal I; Drechsel DN; Hyman AA
    J Muscle Res Cell Motil; 2006; 27(2):107-14. PubMed ID: 16450057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity.
    Kurachi M; Hoshi M; Tashiro H
    Cell Motil Cytoskeleton; 1995; 30(3):221-8. PubMed ID: 7758138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.