These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35476341)

  • 41. Compressive forces stabilize microtubules in living cells.
    Li Y; Kučera O; Cuvelier D; Rutkowski DM; Deygas M; Rai D; Pavlovič T; Vicente FN; Piel M; Giannone G; Vavylonis D; Akhmanova A; Blanchoin L; Théry M
    Nat Mater; 2023 Jul; 22(7):913-924. PubMed ID: 37386067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cotton GhKCH2, a plant-specific kinesin, is low-affinitive and nucleotide-independent as binding to microtubule.
    Xu T; Sun X; Jiang S; Ren D; Liu G
    J Biochem Mol Biol; 2007 Sep; 40(5):723-30. PubMed ID: 17927906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of Biomolecular-Motor-Driven Cargo Transport by Microtubules under Mechanical Stress.
    Nasrin SR; Afrin T; Kabir AMR; Inoue D; Torisawa T; Oiwa K; Sada K; Kakugo A
    ACS Appl Bio Mater; 2020 Apr; 3(4):1875-1883. PubMed ID: 35025310
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The divergent mitotic kinesin MKLP2 exhibits atypical structure and mechanochemistry.
    Atherton J; Yu IM; Cook A; Muretta JM; Joseph A; Major J; Sourigues Y; Clause J; Topf M; Rosenfeld SS; Houdusse A; Moores CA
    Elife; 2017 Aug; 6():. PubMed ID: 28826477
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport by populations of fast and slow kinesins uncovers novel family-dependent motor characteristics important for in vivo function.
    Arpağ G; Shastry S; Hancock WO; Tüzel E
    Biophys J; 2014 Oct; 107(8):1896-1904. PubMed ID: 25418170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Force transduction and strain dynamics in actin stress fibres in response to nanonewton forces.
    Guolla L; Bertrand M; Haase K; Pelling AE
    J Cell Sci; 2012 Feb; 125(Pt 3):603-13. PubMed ID: 22389400
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Linking path and filament persistence lengths of microtubules gliding over kinesin.
    Sweet M; Kang'iri SM; Nitta T
    Sci Rep; 2022 Feb; 12(1):3081. PubMed ID: 35197505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Curvature-Sensitive Kinesin Binding Can Explain Microtubule Ring Formation and Reveals Chaotic Dynamics in a Mathematical Model.
    Pearce SP; Heil M; Jensen OE; Jones GW; Prokop A
    Bull Math Biol; 2018 Nov; 80(11):3002-3022. PubMed ID: 30267355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Wave propagation in protein microtubules modeled as orthotropic elastic shells including transverse shear deformations.
    Daneshmand F; Ghavanloo E; Amabili M
    J Biomech; 2011 Jul; 44(10):1960-6. PubMed ID: 21632054
    [TBL] [Abstract][Full Text] [Related]  

  • 50. XMAP215: a key component of the dynamic microtubule cytoskeleton.
    Kinoshita K; Habermann B; Hyman AA
    Trends Cell Biol; 2002 Jun; 12(6):267-73. PubMed ID: 12074886
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe.
    Gardner MK; Zanic M; Gell C; Bormuth V; Howard J
    Cell; 2011 Nov; 147(5):1092-103. PubMed ID: 22118464
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines.
    Friel CT; Howard J
    J Muscle Res Cell Motil; 2012 Dec; 33(6):377-83. PubMed ID: 22447431
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discrete regions of the kinesin-8 Kip3 tail differentially mediate astral microtubule stability and spindle disassembly.
    Dave S; Anderson SJ; Sinha Roy P; Nsamba ET; Bunning AR; Fukuda Y; Gupta ML
    Mol Biol Cell; 2018 Aug; 29(15):1866-1877. PubMed ID: 29874146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization.
    Friel CT; Howard J
    EMBO J; 2011 Aug; 30(19):3928-39. PubMed ID: 21873978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical interactions among cytoskeletal filaments.
    Wang N
    Hypertension; 1998 Jul; 32(1):162-5. PubMed ID: 9674654
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of microtubule buckling in living cells.
    Pallavicini C; Monastra A; Bardeci NG; Wetzler D; Levi V; Bruno L
    Eur Biophys J; 2017 Sep; 46(6):581-594. PubMed ID: 28424847
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryo-EM Structure (4.5-Å) of Yeast Kinesin-5-Microtubule Complex Reveals a Distinct Binding Footprint and Mechanism of Drug Resistance.
    von Loeffelholz O; Peña A; Drummond DR; Cross R; Moores CA
    J Mol Biol; 2019 Feb; 431(4):864-872. PubMed ID: 30659798
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell cytoskeleton and tensegrity.
    Volokh KY; Vilnay O; Belsky M
    Biorheology; 2002; 39(1-2):63-7. PubMed ID: 12082268
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analyzing kinesin motor domain translocation in cultured hippocampal neurons.
    Yang R; Bentley M; Huang CF; Banker G
    Methods Cell Biol; 2016; 131():217-232. PubMed ID: 26794516
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Understanding mechanochemical coupling in kinesins using first-passage-time processes.
    Kolomeisky AB; Stukalin EB; Popov AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031902. PubMed ID: 15903454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.