These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35476564)

  • 1. Multistep Multiagent Reinforcement Learning for Optimal Energy Schedule Strategy of Charging Stations in Smart Grid.
    Zhang Y; Yang Q; An D; Li D; Wu Z
    IEEE Trans Cybern; 2023 Jul; 53(7):4292-4305. PubMed ID: 35476564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Reinforcement Learning for Charging Scheduling of Electric Vehicles Considering Distribution Network Voltage Stability.
    Liu D; Zeng P; Cui S; Song C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Scheduling of Electric Vehicles Based on Reinforcement Learning.
    Viziteu A; Furtună D; Robu A; Senocico S; Cioată P; Remus Baltariu M; Filote C; Răboacă MS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Deep Q-Network for User-Side Battery Energy Storage Charging and Discharging Strategy in Industrial Parks.
    Chen S; Jiang C; Li J; Xiang J; Xiao W
    Entropy (Basel); 2021 Oct; 23(10):. PubMed ID: 34682035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning.
    Ye X; Deng Z; Shi Y; Shen W
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On optimal charging scheduling for electric vehicles with wind power generation.
    Wu J; Jia QS
    Fundam Res; 2024 Jul; 4(4):951-960. PubMed ID: 39156576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal dispatching of regional power grid considering vehicle network interaction.
    Hua Y; Wang S; Wang Y; Zhang L; Liu W
    PLoS One; 2024; 19(7):e0297855. PubMed ID: 39012885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Off Scheduling for Electric Vehicle Charging in Two-Links Charging Stations Using Binary Optimization Approaches.
    Zdunek R; Grobelny A; Witkowski J; Gnot RI
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal number of charging station and pricing strategy for the electric vehicle with component commonality considering consumer range anxiety.
    Yu W; Zhang L; Lu R; Ma J
    PLoS One; 2023; 18(5):e0283320. PubMed ID: 37155615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power consumption prediction for electric vehicle charging stations and forecasting income.
    Akshay KC; Grace GH; Gunasekaran K; Samikannu R
    Sci Rep; 2024 Mar; 14(1):6497. PubMed ID: 38499576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and simulation of 4 kW solar power-based hybrid EV charging station.
    Singla P; Boora S; Singhal P; Mittal N; Mittal V; Gared F
    Sci Rep; 2024 Mar; 14(1):7336. PubMed ID: 38538667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal scheduling strategy of electric vehicle based on improved NSGA-III algorithm.
    Wu Y; Yan D; Yang JM; Wang AP; Feng D
    PLoS One; 2024; 19(5):e0298572. PubMed ID: 38758947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient and Secure Energy Trading Approach with Machine Learning Technique and Consortium Blockchain.
    Ashfaq T; Khalid MI; Ali G; Affendi ME; Iqbal J; Hussain S; Ullah SS; Yahaya AS; Khalid R; Mateen A
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Reinforcement Learning-Based Trading Strategy for Load Aggregators on Price-Responsive Demand.
    Yang G; Du S; Duan Q; Su J
    Comput Intell Neurosci; 2022; 2022():6884956. PubMed ID: 36131901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Reinforcement Learning Microgrid Optimization Strategy Considering Priority Flexible Demand Side.
    Sang J; Sun H; Kou L
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning-Based Online One-to-Multiple Charging Scheme in Wireless Rechargeable Sensor Network.
    Gong Z; Wu H; Feng Y; Liu N
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal Energy Management Framework for Truck-Mounted Mobile Charging Stations Considering Power Distribution System Operating Conditions.
    Jeon S; Choi DH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal planning and allocation of Plug-in Hybrid Electric Vehicles charging stations using a novel hybrid optimization technique.
    Subramaniam A; Ravi Singh LRS
    PLoS One; 2023; 18(7):e0284421. PubMed ID: 37494412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cost-Effective Electric Vehicle Intelligent Charge Scheduling Method for Commercial Smart Parking Lots Using a Simplified Convex Relaxation Technique.
    Jawad M; Qureshi MB; Ali SM; Shabbir N; Khan MUS; Aloraini A; Nawaz R
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed Energy Trading and Scheduling Among Microgrids via Multiagent Reinforcement Learning.
    Gao G; Wen Y; Tao D
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10638-10652. PubMed ID: 35552143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.