These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35476605)

  • 1. R-squared Measures for Multilevel Models with Three or More Levels.
    Rights JD; Sterba SK
    Multivariate Behav Res; 2023; 58(2):340-367. PubMed ID: 35476605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect size measures for longitudinal growth analyses: Extending a framework of multilevel model R-squareds to accommodate heteroscedasticity, autocorrelation, nonlinearity, and alternative centering strategies.
    Rights JD; Sterba SK
    New Dir Child Adolesc Dev; 2021 Jan; 2021(175):65-110. PubMed ID: 33512773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying explained variance in multilevel models: An integrative framework for defining R-squared measures.
    Rights JD; Sterba SK
    Psychol Methods; 2019 Jun; 24(3):309-338. PubMed ID: 29999378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Recommendations on the Use of R-Squared Differences in Multilevel Model Comparisons.
    Rights JD; Sterba SK
    Multivariate Behav Res; 2020; 55(4):568-599. PubMed ID: 31559890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. r2mlm: An R package calculating R-squared measures for multilevel models.
    Shaw M; Rights JD; Sterba SS; Flake JK
    Behav Res Methods; 2023 Jun; 55(4):1942-1964. PubMed ID: 35798918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A framework of R-squared measures for single-level and multilevel regression mixture models.
    Rights JD; Sterba SK
    Psychol Methods; 2018 Sep; 23(3):434-457. PubMed ID: 28301198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect Size Measures for Multilevel Models in Clinical Child and Adolescent Research: New R-Squared Methods and Recommendations.
    Rights JD; Cole DA
    J Clin Child Adolesc Psychol; 2018; 47(6):863-873. PubMed ID: 30433818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining R-squared measures for mixed-effects location scale models.
    Zhang X; Hedeker D
    Stat Med; 2022 Sep; 41(22):4467-4483. PubMed ID: 35799315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Level-specific residuals and diagnostic measures, plots, and tests for random effects selection in multilevel and mixed models.
    Cho SJ; De Boeck P; Naveiras M; Ervin H
    Behav Res Methods; 2022 Oct; 54(5):2178-2220. PubMed ID: 35230628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general multilevel SEM framework for assessing multilevel mediation.
    Preacher KJ; Zyphur MJ; Zhang Z
    Psychol Methods; 2010 Sep; 15(3):209-33. PubMed ID: 20822249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between multilevel models and non-parametric multilevel mixture models: Discrete approximation of intraclass correlation, random coefficient distributions, and residual heteroscedasticity.
    Rights JD; Sterba SK
    Br J Math Stat Psychol; 2016 Nov; 69(3):316-343. PubMed ID: 27458827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centering predictor variables in cross-sectional multilevel models: a new look at an old issue.
    Enders CK; Tofighi D
    Psychol Methods; 2007 Jun; 12(2):121-38. PubMed ID: 17563168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect Partitioning in Cross-Sectionally Clustered Data Without Multilevel Models.
    McNeish D
    Multivariate Behav Res; 2019; 54(6):906-925. PubMed ID: 31021178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling approaches for cross-sectional integrative data analysis: Evaluations and recommendations.
    Wilcox KT; Wang L
    Psychol Methods; 2023 Feb; 28(1):242-261. PubMed ID: 34323585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centering categorical predictors in multilevel models: Best practices and interpretation.
    Yaremych HE; Preacher KJ; Hedeker D
    Psychol Methods; 2023 Jun; 28(3):613-630. PubMed ID: 34914468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the Consequences of Collinearity for Multilevel Models: The Importance of Disaggregation Across Levels.
    Yaremych HE; Preacher KJ
    Multivariate Behav Res; 2024; 59(4):693-715. PubMed ID: 38721945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Multilevel Nature of Meta-Analysis: A Tutorial, Comparison of Software Programs, and Discussion of Analytic Choices.
    Pastor DA; Lazowski RA
    Multivariate Behav Res; 2018; 53(1):74-89. PubMed ID: 28952787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling correlated data: Multilevel models and generalized estimating equations and their use with data from research in developmental disabilities.
    Vagenas D; Totsika V
    Res Dev Disabil; 2018 Oct; 81():1-11. PubMed ID: 29786528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic framework for defining R-squared measures in mediation analysis.
    Liu H; Yuan KH; Li H
    Psychol Methods; 2023 May; ():. PubMed ID: 37166856
    [No Abstract]   [Full Text] [Related]  

  • 20. The impact of centering first-level predictors on individual and contextual effects in multilevel data analysis.
    Wu YW; Wooldridge PJ
    Nurs Res; 2005; 54(3):212-6. PubMed ID: 15897797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.