BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 35476715)

  • 1. Division of coal spontaneous combustion stages and selection of indicator gases.
    Li Z; Zhang M; Yang Z; Yu J; Liu Y; Wang H
    PLoS One; 2022; 17(4):e0267479. PubMed ID: 35476715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An approach for evaluation of grading forecasting index of coal spontaneous combustion by temperature-programmed analysis.
    Wang K; Li Y; Zhang Y; Deng J
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):3970-3979. PubMed ID: 35962162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation on spontaneous combustion oxidation characteristics and stages of coal with different metamorphic degrees.
    Nie B; Yan H; Liu P; Chen Z; Peng C; Wang X; Yin F; Gong J; Wei Y; Lin S; Gao Q; Cao M
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):8269-8279. PubMed ID: 36053423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The stage analysis and countermeasures of coal spontaneous combustion based on "five stages" division.
    Zhu H; Sheng K; Zhang Y; Fang S; Wu Y
    PLoS One; 2018; 13(8):e0202724. PubMed ID: 30138357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of air supply on coal spontaneous combustion during support withdrawal in fully mechanized coal mining and its prevention.
    Zhang X; Zhou X; Bai G; Wang C
    Sci Rep; 2021 Sep; 11(1):19330. PubMed ID: 34588534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on fire early warning index system of coal mine goaf based on multi-parameter fusion.
    Wang B; Lv Y; Liu C
    Sci Rep; 2024 Jan; 14(1):485. PubMed ID: 38177292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for evaluating the coal spontaneous combustion index by the coefficient of variation and Kruskal-Wallis test: a case study.
    Wang K; Li Y; Zhai X; Bai G
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58956-58966. PubMed ID: 37002521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative calculation of gases generation during low-temperature oxidation of coal.
    Li J; Cao Q; Lu W; Geng J; Li J; Zhuo H
    Environ Sci Pollut Res Int; 2023 Nov; 30(53):113774-113789. PubMed ID: 37851263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the application of coal spontaneous combustion positive pressure beam tube classification monitoring and early warning.
    Kong B; Niu S; Cao H; Lu W; Wen J; Yin J; Zhang W; Zhang X
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75735-75751. PubMed ID: 37222889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the prediction method of coal spontaneous combustion development period based on critical temperature.
    Qu L
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35748-35760. PubMed ID: 30357672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the effect of coal particle size on spontaneous combustion and oxidation characteristics of coal.
    Jia X; Wu J; Lian C; Wang J; Rao J; Feng R; Chen Y
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):16113-16122. PubMed ID: 34647207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation.
    Day SJ; Carras JN; Fry R; Williams DJ
    Environ Monit Assess; 2010 Jul; 166(1-4):529-41. PubMed ID: 19572109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the evolution of the pore structure of low rank coal during spontaneous combustion.
    Wang H; Li J; Zhang Y; Wu Y; Wang Z
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39932-39945. PubMed ID: 36602744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of Speciated Mercury Emissions from Coal Combustion in Air and Oxygen-Enriched Environment.
    Sun Y; Lv G; Zhang H; Zhang X; Bu X; Wang X; Zhang W; Tong Y
    Bull Environ Contam Toxicol; 2019 May; 102(5):695-700. PubMed ID: 31065732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental study on thermal effect and gas release laws of coal-polyurethane cooperative spontaneous combustion.
    Wang H; Tian Y; Li J; Chen X
    Sci Rep; 2021 Jan; 11(1):1994. PubMed ID: 33479425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the thermal behaviour of pre-oxidation coal in deep mines.
    Niu H; Li S; Bu Y; Yang Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55414-55423. PubMed ID: 36892701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-distance migration law of radon in overburden of abandoned goaf during coal spontaneous combustion.
    Chan Z; Zhou B; Wang J; Lu Z; Yang Q; Dong Z; Dong K
    J Environ Radioact; 2023 Dec; 270():107284. PubMed ID: 37634424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on CO source identification and spontaneous combustion warning concentration in the return corner of working face in shallow buried coal seam.
    Wang C; Hu P; Sun Y; Yang C
    Environ Sci Pollut Res Int; 2024 Feb; 31(10):15050-15064. PubMed ID: 38285265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric and infrared spectroscopic studies of the spontaneous combustion characteristics of different pre-oxidized lignites.
    Ma T; Chen X; Zhai X; Bai Y
    RSC Adv; 2019 Oct; 9(56):32476-32489. PubMed ID: 35529718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of coal spontaneous combustion index gas under different oxygen concentration environment: an experimental study.
    Jia X; Wu J; Lian C; Rao J
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):87257-87267. PubMed ID: 35804231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.