These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35477071)

  • 1. Crack propagation in articular cartilage under cyclic loading using cohesive finite element modeling.
    Orozco GA; Tanska P; Gustafsson A; Korhonen RK; Isaksson H
    J Mech Behav Biomed Mater; 2022 Jul; 131():105227. PubMed ID: 35477071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collagen fibres determine the crack morphology in articular cartilage.
    Moo EK; Tanska P; Federico S; Al-Saffar Y; Herzog W; Korhonen RK
    Acta Biomater; 2021 May; 126():301-314. PubMed ID: 33757903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of collagen fibril distributions on the crack profile in articular cartilage.
    Komeili A; Rasoulian A; Kakavand R
    Comput Methods Programs Biomed; 2020 Oct; 195():105648. PubMed ID: 32717670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biphasic visco-hyperelastic damage model for articular cartilage: application to micromechanical modelling of the osteoarthritis-induced degradation behaviour.
    Liu D; Ma S; Stoffel M; Markert B
    Biomech Model Mechanobiol; 2020 Jun; 19(3):1055-1077. PubMed ID: 31802293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of cracked articular cartilage under uniaxial creep and cyclic tensile loading.
    Si Y; Tan Y; Gao L; Li R; Zhang C; Gao H; Zhang X
    J Biomech; 2022 Mar; 134():110988. PubMed ID: 35151037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of normal and osteoarthritic human articular cartilage.
    Robinson DL; Kersh ME; Walsh NC; Ackland DC; de Steiger RN; Pandy MG
    J Mech Behav Biomed Mater; 2016 Aug; 61():96-109. PubMed ID: 26851527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of temperature effects on the poro-viscoelastic behavior of articular cartilage.
    Behrou R; Foroughi H; Haghpanah F
    J Mech Behav Biomed Mater; 2018 Feb; 78():214-223. PubMed ID: 29174620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law.
    Alrayes O; Könke C; Ooi ET; Hamdia KM
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of loading rate on the development of early damage in articular cartilage.
    Párraga Quiroga JM; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):263-273. PubMed ID: 27514541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Numerical Study of Crack Mixed Mode Model in Concrete Material Subjected to Cyclic Loading.
    Alrayes O; Könke C; Hamdia KM
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration.
    Speirs AD; Beaulé PE; Ferguson SJ; Frei H
    J Biomech; 2014 Jul; 47(10):2348-53. PubMed ID: 24856886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of frequency on crack growth in articular cartilage.
    Sadeghi H; Lawless BM; Espino DM; Shepherd DET
    J Mech Behav Biomed Mater; 2018 Jan; 77():40-46. PubMed ID: 28888932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint with Fibril-Reinforced Poroelastic Cartilages and Menisci.
    Esrafilian A; Stenroth L; Mononen ME; Tanska P; Avela J; Korhonen RK
    Sci Rep; 2020 Feb; 10(1):3026. PubMed ID: 32080233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biphasic finite element study on the role of the articular cartilage superficial zone in confined compression.
    Guo H; Maher SA; Torzilli PA
    J Biomech; 2015 Jan; 48(1):166-70. PubMed ID: 25465194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study.
    Wilson W; van Donkelaar CC; van Rietbergen B; Ito K; Huiskes R
    J Biomech; 2004 Mar; 37(3):357-66. PubMed ID: 14757455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis.
    Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK
    J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Articular cartilage fatigue causes frequency-dependent softening and crack extension.
    Chawla D; Thao AK; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2024 Dec; 160():106753. PubMed ID: 39369619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Tensile Stress in the Development of Posttraumatic Osteoarthritis.
    Zhong D; Zhang M; Yu J; Luo ZP
    Biomed Res Int; 2018; 2018():4210353. PubMed ID: 30519575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Equilibrium Constitutive Model of Anisotropic Cartilage Damage to Elucidate Mechanisms of Damage Initiation and Progression.
    Stender ME; Regueiro RA; Klisch SM; Ferguson VL
    J Biomech Eng; 2015 Aug; 137(8):081010. PubMed ID: 26043366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage.
    Korhonen RK; Laasanen MS; Töyräs J; Lappalainen R; Helminen HJ; Jurvelin JS
    J Biomech; 2003 Sep; 36(9):1373-9. PubMed ID: 12893046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.