BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 35477153)

  • 1. Synergistic enhanced rolling circle amplification based on mutS and radical polymerization for single-point mutation DNA detection.
    Lee S; You J; Baek I; Park H; Jang K; Park C; Na S
    Biosens Bioelectron; 2022 Aug; 210():114295. PubMed ID: 35477153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation.
    Zhu J; Ding Y; Liu X; Wang L; Jiang W
    Biosens Bioelectron; 2014 Sep; 59():276-81. PubMed ID: 24742973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical CYFRA21-1 DNA sensor with PCR-like sensitivity based on AgNPs and cascade polymerization.
    Li J; Zhao L; Wen D; Li X; Yang H; Wang D; Kong J
    Anal Bioanal Chem; 2020 Jul; 412(17):4155-4163. PubMed ID: 32306069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 mediated triple signal amplification platform for high selective and sensitive detection of single base mutations.
    Zhou M; Wang H; Li C; Yan C; Qin P; Huang L
    Anal Chim Acta; 2022 Oct; 1230():340421. PubMed ID: 36192055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysaccharide-enhanced ARGET ATRP signal amplification for ultrasensitive fluorescent detection of lung cancer CYFRA 21-1 DNA.
    Wang X; Zhang Y; Zhao L; Wang D; Yang H; Kong J
    Anal Bioanal Chem; 2020 Apr; 412(11):2413-2421. PubMed ID: 32047944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitive and selective DNA detecting electrochemical sensor via double cleaving CRISPR Cas12a and dual polymerization on hyperbranched rolling circle amplification.
    You J; Park H; Lee H; Jang K; Park J; Na S
    Biosens Bioelectron; 2023 Mar; 224():115078. PubMed ID: 36641878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Ultrasensitive Diagnostic Biochip Based on Biomimetic Periodic Nanostructure-Assisted Rolling Circle Amplification.
    Yao Q; Wang Y; Wang J; Chen S; Liu H; Jiang Z; Zhang X; Liu S; Yuan Q; Zhou X
    ACS Nano; 2018 Jul; 12(7):6777-6783. PubMed ID: 29924598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional nucleic acid biosensors utilizing rolling circle amplification.
    Bialy RM; Mainguy A; Li Y; Brennan JD
    Chem Soc Rev; 2022 Oct; 51(21):9009-9067. PubMed ID: 36259976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in biological detection with rolling circle amplification: design strategy, biosensing mechanism, and practical applications.
    Gao YP; Huang KJ; Wang FT; Hou YY; Xu J; Li G
    Analyst; 2022 Jul; 147(15):3396-3414. PubMed ID: 35748818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasingly branched rolling circle amplification for the cancer gene detection.
    Li H; Xu J; Wang Z; Wu ZS; Jia L
    Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification.
    Zhang Y; Wang L; Luo F; Qiu B; Guo L; Weng Z; Lin Z; Chen G
    Chem Commun (Camb); 2017 Mar; 53(20):2910-2913. PubMed ID: 28154878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs.
    Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z
    Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one.
    Wang L; Bu S; Xu S; Huang T; Yang F; Tan Q; Deng M; Xie W; Cai B; Chen J
    Mikrochim Acta; 2024 May; 191(6):334. PubMed ID: 38758362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM
    Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive and selective detection of single-nucleotide polymorphisms using gold nanoparticle MutS enzymes and a micro cantilever resonator.
    Park C; Kang J; Baek I; You J; Jang K; Na S
    Talanta; 2019 Dec; 205():120154. PubMed ID: 31450442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in rolling circle amplification-based biosensing strategies-A review.
    Xu L; Duan J; Chen J; Ding S; Cheng W
    Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optomagnetic Detection of Rolling Circle Amplification Products.
    Minero GAS; Cangiano V; Fock J; Garbarino F; Hansen MF
    Methods Mol Biol; 2020; 2063():3-15. PubMed ID: 31667758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications.
    Li C; Wang Y; Li PF; Fu Q
    Acta Biomater; 2023 Apr; 160():1-13. PubMed ID: 36764595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence polarization-based detection of cancer-related mutations using target-initiated rolling circle amplification.
    Kwon WY; Cha BS; Kim S; Hwang SH; Kim JM; Kalimuthu K; Park HG; Park KS
    Analyst; 2019 Jul; 144(14):4149-4152. PubMed ID: 31237578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.