These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 35477153)
1. Synergistic enhanced rolling circle amplification based on mutS and radical polymerization for single-point mutation DNA detection. Lee S; You J; Baek I; Park H; Jang K; Park C; Na S Biosens Bioelectron; 2022 Aug; 210():114295. PubMed ID: 35477153 [TBL] [Abstract][Full Text] [Related]
2. Toehold-mediated strand displacement reaction triggered isothermal DNA amplification for highly sensitive and selective fluorescent detection of single-base mutation. Zhu J; Ding Y; Liu X; Wang L; Jiang W Biosens Bioelectron; 2014 Sep; 59():276-81. PubMed ID: 24742973 [TBL] [Abstract][Full Text] [Related]
3. Electrochemical CYFRA21-1 DNA sensor with PCR-like sensitivity based on AgNPs and cascade polymerization. Li J; Zhao L; Wen D; Li X; Yang H; Wang D; Kong J Anal Bioanal Chem; 2020 Jul; 412(17):4155-4163. PubMed ID: 32306069 [TBL] [Abstract][Full Text] [Related]
4. CRISPR/Cas9 mediated triple signal amplification platform for high selective and sensitive detection of single base mutations. Zhou M; Wang H; Li C; Yan C; Qin P; Huang L Anal Chim Acta; 2022 Oct; 1230():340421. PubMed ID: 36192055 [TBL] [Abstract][Full Text] [Related]
5. Polysaccharide-enhanced ARGET ATRP signal amplification for ultrasensitive fluorescent detection of lung cancer CYFRA 21-1 DNA. Wang X; Zhang Y; Zhao L; Wang D; Yang H; Kong J Anal Bioanal Chem; 2020 Apr; 412(11):2413-2421. PubMed ID: 32047944 [TBL] [Abstract][Full Text] [Related]
6. Sensitive and selective DNA detecting electrochemical sensor via double cleaving CRISPR Cas12a and dual polymerization on hyperbranched rolling circle amplification. You J; Park H; Lee H; Jang K; Park J; Na S Biosens Bioelectron; 2023 Mar; 224():115078. PubMed ID: 36641878 [TBL] [Abstract][Full Text] [Related]
7. An Ultrasensitive Diagnostic Biochip Based on Biomimetic Periodic Nanostructure-Assisted Rolling Circle Amplification. Yao Q; Wang Y; Wang J; Chen S; Liu H; Jiang Z; Zhang X; Liu S; Yuan Q; Zhou X ACS Nano; 2018 Jul; 12(7):6777-6783. PubMed ID: 29924598 [TBL] [Abstract][Full Text] [Related]
8. Functional nucleic acid biosensors utilizing rolling circle amplification. Bialy RM; Mainguy A; Li Y; Brennan JD Chem Soc Rev; 2022 Oct; 51(21):9009-9067. PubMed ID: 36259976 [TBL] [Abstract][Full Text] [Related]
9. Recent advances in biological detection with rolling circle amplification: design strategy, biosensing mechanism, and practical applications. Gao YP; Huang KJ; Wang FT; Hou YY; Xu J; Li G Analyst; 2022 Jul; 147(15):3396-3414. PubMed ID: 35748818 [TBL] [Abstract][Full Text] [Related]
10. Increasingly branched rolling circle amplification for the cancer gene detection. Li H; Xu J; Wang Z; Wu ZS; Jia L Biosens Bioelectron; 2016 Dec; 86():1067-1073. PubMed ID: 27569300 [TBL] [Abstract][Full Text] [Related]
11. An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification. Zhang Y; Wang L; Luo F; Qiu B; Guo L; Weng Z; Lin Z; Chen G Chem Commun (Camb); 2017 Mar; 53(20):2910-2913. PubMed ID: 28154878 [TBL] [Abstract][Full Text] [Related]
12. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs. Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196 [TBL] [Abstract][Full Text] [Related]
13. Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one. Wang L; Bu S; Xu S; Huang T; Yang F; Tan Q; Deng M; Xie W; Cai B; Chen J Mikrochim Acta; 2024 May; 191(6):334. PubMed ID: 38758362 [TBL] [Abstract][Full Text] [Related]
14. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification. Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390 [TBL] [Abstract][Full Text] [Related]
15. Highly sensitive and selective detection of single-nucleotide polymorphisms using gold nanoparticle MutS enzymes and a micro cantilever resonator. Park C; Kang J; Baek I; You J; Jang K; Na S Talanta; 2019 Dec; 205():120154. PubMed ID: 31450442 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in rolling circle amplification-based biosensing strategies-A review. Xu L; Duan J; Chen J; Ding S; Cheng W Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384 [TBL] [Abstract][Full Text] [Related]
17. Optomagnetic Detection of Rolling Circle Amplification Products. Minero GAS; Cangiano V; Fock J; Garbarino F; Hansen MF Methods Mol Biol; 2020; 2063():3-15. PubMed ID: 31667758 [TBL] [Abstract][Full Text] [Related]
18. Construction of rolling circle amplification products-based pure nucleic acid nanostructures for biomedical applications. Li C; Wang Y; Li PF; Fu Q Acta Biomater; 2023 Apr; 160():1-13. PubMed ID: 36764595 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence polarization-based detection of cancer-related mutations using target-initiated rolling circle amplification. Kwon WY; Cha BS; Kim S; Hwang SH; Kim JM; Kalimuthu K; Park HG; Park KS Analyst; 2019 Jul; 144(14):4149-4152. PubMed ID: 31237578 [TBL] [Abstract][Full Text] [Related]
20. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification. Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]