These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
23. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Olate-Moya F; Rubí-Sans G; Engel E; Mateos-Timoneda MÁ; Palza H Biomacromolecules; 2024 Jun; 25(6):3312-3324. PubMed ID: 38728671 [TBL] [Abstract][Full Text] [Related]
24. Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo. Zhu Y; Wang W; Chen Q; Ren T; Yang J; Li G; Qi Y; Yuan C; Wang P Clin Oral Investig; 2023 Sep; 27(9):5153-5170. PubMed ID: 37428274 [TBL] [Abstract][Full Text] [Related]
25. A biphasic calcium phosphate/acylated methacrylate gelatin composite hydrogel promotes osteogenesis and bone repair. Ren-Jie Xu ; Jin-Jin Ma ; Yu X; Zhou XQ; Zhang JY; Li YD; Yang HL; Saijilafu ; Chen GX Connect Tissue Res; 2023 Sep; 64(5):445-456. PubMed ID: 37171221 [TBL] [Abstract][Full Text] [Related]
26. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications. Kallingal N; Ramakrishnan R; Krishnan V K J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058 [TBL] [Abstract][Full Text] [Related]
27. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF Bone; 2022 Jan; 154():116198. PubMed ID: 34534709 [TBL] [Abstract][Full Text] [Related]
28. 3D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles. Kara Özenler A; Distler T; Akkineni AR; Tihminlioglu F; Gelinsky M; Boccaccini AR Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38394672 [TBL] [Abstract][Full Text] [Related]
29. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
30. Low-Temperature Three-Dimensional Printing of Tissue Cartilage Engineered with Gelatin Methacrylamide. Luo C; Xie R; Zhang J; Liu Y; Li Z; Zhang Y; Zhang X; Yuan T; Chen Y; Fan W Tissue Eng Part C Methods; 2020 Jun; 26(6):306-316. PubMed ID: 32349648 [TBL] [Abstract][Full Text] [Related]
31. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling. de Barros NR; Gomez A; Ermis M; Falcone N; Haghniaz R; Young P; Gao Y; Aquino AF; Li S; Niu S; Chen R; Huang S; Zhu Y; Eliahoo P; Sun A; Khorsandi D; Kim J; Kelber J; Khademhosseini A; Kim HJ; Li B Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37348491 [TBL] [Abstract][Full Text] [Related]
32. Bioprinting Organotypic Hydrogels with Improved Mesenchymal Stem Cell Remodeling and Mineralization Properties for Bone Tissue Engineering. Duarte Campos DF; Blaeser A; Buellesbach K; Sen KS; Xun W; Tillmann W; Fischer H Adv Healthc Mater; 2016 Jun; 5(11):1336-45. PubMed ID: 27072652 [TBL] [Abstract][Full Text] [Related]
33. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration. Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910 [TBL] [Abstract][Full Text] [Related]
34. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells. Wu Z; Xie S; Kang Y; Shan X; Li Q; Cai Z Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112393. PubMed ID: 34579912 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Chen X; Bai S; Li B; Liu H; Wu G; Liu S; Zhao Y Int J Nanomedicine; 2016; 11():4707-4718. PubMed ID: 27695327 [TBL] [Abstract][Full Text] [Related]
36. Preservation of critical quality attributes of mesenchymal stromal cells in 3D bioprinted structures by using natural hydrogel scaffolds. Martorell L; López-Fernández A; García-Lizarribar A; Sabata R; Gálvez-Martín P; Samitier J; Vives J Biotechnol Bioeng; 2023 Sep; 120(9):2717-2724. PubMed ID: 36919270 [TBL] [Abstract][Full Text] [Related]
37. Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting. Mirek A; Belaid H; Bartkowiak A; Barranger F; Salmeron F; Kajdan M; Grzeczkowicz M; Cavaillès V; Lewińska D; Bechelany M Biomater Adv; 2023 Jul; 150():213436. PubMed ID: 37104964 [TBL] [Abstract][Full Text] [Related]
38. Designing Gelatin Methacryloyl (GelMA)-Based Bioinks for Visible Light Stereolithographic 3D Biofabrication. Kumar H; Sakthivel K; Mohamed MGA; Boras E; Shin SR; Kim K Macromol Biosci; 2021 Jan; 21(1):e2000317. PubMed ID: 33043610 [TBL] [Abstract][Full Text] [Related]
39. 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration. Li Z; Li S; Yang J; Ha Y; Zhang Q; Zhou X; He C Carbohydr Polym; 2022 Aug; 290():119469. PubMed ID: 35550764 [TBL] [Abstract][Full Text] [Related]
40. A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Wang M; Li W; Luo Z; Tang G; Mu X; Kuang X; Guo J; Zhao Z; Flores RS; Jiang Z; Lian L; Japo JO; Ghaemmaghami AM; Zhang YS Biofabrication; 2022 Mar; 14(2):. PubMed ID: 35226880 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]